版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025屆浙江省富陽二中高一下數(shù)學期末達標檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設m,n是兩條不同的直線,α,β是兩個不同的平面,則下列命題正確的是()A.若,則 B.若,則C.若,則 D.若,則2.下列關于函數(shù)()的敘述,正確的是()A.在上單調(diào)遞增,在上單調(diào)遞減B.值域為C.圖像關于點中心對稱D.不等式的解集為3..若且,直線不通過()A.第一象限 B.第二象限 C.第三象限 D.第四象限,4.已知函數(shù)在區(qū)間(1,2)上是增函數(shù),則實數(shù)a的取值范圍是()A.(0,+∞) B.(0,1) C.(0,1] D.(﹣1,0)5.某公司的廣告費支出與銷售額(單位:萬元)之間有下列對應數(shù)據(jù):已知對呈線性相關關系,且回歸方程為,工作人員不慎將表格中的第一個數(shù)據(jù)遺失,該數(shù)據(jù)為()A.28 B.30 C.32 D.356.已知向量,滿足,,且在方向上的投影是-1,則實數(shù)()A.1 B.-1 C.2 D.-27.如圖,PA垂直于以AB為直徑的圓所在平面,C為圓上異于A,B的任意一點,垂足為E,點F是PB上一點,則下列判斷中不正確的是()﹒A.平面PAC B. C. D.平面平面PBC8.以下莖葉圖記錄了甲、乙兩組各五名學生在一次英語聽力測試中的成績(單位:分).已知甲組數(shù)據(jù)的中位數(shù)為15,乙組數(shù)據(jù)的平均數(shù)為16.8,則x,y的值分別為()A.2,5 B.5,5 C.5,8 D.8,89.一個幾何體的三視圖如圖所示,則這個幾何體的表面積為()A.13+5 B.11+5 C.10.在等比數(shù)列中,若,則的值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.不等式的解集是.12.已知數(shù)列的通項公式為,則該數(shù)列的前1025項的和___________.13.有一個底面半徑為2,高為2的圓柱,點,分別為這個圓柱上底面和下底面的圓心,在這個圓柱內(nèi)隨機取一點P,則點P到點或的距離不大于1的概率是________.14.若數(shù)據(jù)的平均數(shù)為,則____________.15.如圖所示,隔河可以看到對岸兩目標,但不能到達,現(xiàn)在岸邊取相距的兩點,測得(在同一平面內(nèi)),則兩目標間的距離為_________.16.函數(shù)的最小正周期為__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,在直三棱柱中,,,分別是,,的中點.(1)求證:平面;(2)若,求證:平面平面.18.已知正項數(shù)列的前項和為,對任意,點都在函數(shù)的圖象上.(1)求數(shù)列的通項公式;(2)若數(shù)列,求數(shù)列的前項和;(3)已知數(shù)列滿足,若對任意,存在使得成立,求實數(shù)的取值范圍.19.如圖,在三棱柱中,平面平面,,,為棱的中點.(1)證明:;(2)求點到平面的距離.20.某企業(yè)生產(chǎn)的某種產(chǎn)品,生產(chǎn)總成本(元)與產(chǎn)量(噸)()函數(shù)關系為,且函數(shù)是上的連續(xù)函數(shù)(1)求的值;(2)當產(chǎn)量為多少噸時,平均生產(chǎn)成本最低?21.已知數(shù)列的通項公式為.(1)求這個數(shù)列的第10項;(2)在區(qū)間內(nèi)是否存在數(shù)列中的項?若有,有幾項?若沒有,請說明理由.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
根據(jù)各選項的條件及結論,可畫出圖形或想象圖形,再結合平行、垂直的判定定理即可找出正確選項.【詳解】選項A錯誤,同時和一個平面平行的兩直線不一定平行,可能相交,可能異面;選項B錯誤,兩平面平行,兩平面內(nèi)的直線不一定平行,可能異面;選項C錯誤,一個平面內(nèi)垂直于兩平面交線的直線,不一定和另一平面垂直,可能斜交;選項D正確,由,便得,又,,即.故選:D.【點睛】本題考查空間直線位置關系的判定,這種位置關系的判斷題,可以舉反例或者用定理簡單證明,屬于基礎題.2、D【解析】
運用正弦函數(shù)的一個周期的圖象,結合單調(diào)性、值域和對稱中心,以及不等式的解集,可得所求結論.【詳解】函數(shù)(),在,單調(diào)遞增,在上單調(diào)遞減;值域為;圖象關于點對稱;由可得,解得:.故選:D.【點睛】本題考查三角函數(shù)的圖象和性質,考查邏輯思維能力和運算能力,屬于??碱}.3、D【解析】
因為且,所以,,又直線可化為,斜率為,在軸截距為,因此直線過一二三象限,不過第四象限.故選:D.4、C【解析】
由題意可得在上為減函數(shù),列出不等式組,由此解得的范圍.【詳解】∵函數(shù)在區(qū)間上是增函數(shù),∴函數(shù)在上為減函數(shù),其對稱軸為,∴可得,解得.故選:C.【點睛】本題主要考查復合函數(shù)的單調(diào)性,二次函數(shù)的性質,體現(xiàn)了轉化的數(shù)學思想,屬于基礎題.5、B【解析】
由回歸方程經(jīng)過樣本中心點,求得樣本平均數(shù)后代入回歸方程即可求得第一組的數(shù)值.【詳解】設第一組數(shù)據(jù)為,則,,根據(jù)回歸方程經(jīng)過樣本中心點,代入回歸方程,可得,解得,故選:B.【點睛】本題考查了回歸方程的性質及簡單應用,屬于基礎題.6、A【解析】
由投影的定義計算.【詳解】由題意,解得.故選:A.【點睛】本題考查向量數(shù)量積的幾何意義,掌握向量投影的定義是解題關鍵.7、C【解析】
根據(jù)線面垂直的性質及判定,可判斷ABC選項,由面面垂直的判定可判斷D.【詳解】對于A,PA垂直于以AB為直徑的圓所在平面,而底面圓面,則,又由圓的性質可知,且,則平面PAC.所以A正確;對于B,由A可知,由題意可知,且,所以平面,而平面,所以,所以B正確;對于C,由B可知平面,因而與平面不垂直,所以不成立,所以C錯誤.對于D,由A、B可知,平面PAC,平面,由面面垂直的性質可得平面平面PBC.所以D正確;綜上可知,C為錯誤選項.故選:C.【點睛】本題考查了線面垂直的性質及判定,面面垂直的判定定理,屬于基礎題.8、C【解析】試題分析:由題意得,,選C.考點:莖葉圖9、B【解析】
三視圖可看成由一個長1寬2高1的長方體和以2和1為直角邊的三角形為底面高為1的三棱柱組合而成.【詳解】幾何體可看成由一個長1寬2高1的長方體和以2和1為直角邊的三角形為底面高為1的三棱柱組合而成S=【點睛】已知三視圖,求原幾何體的表面積或體積是高考必考內(nèi)容,主要考查空間想象能力,需要熟練掌握常見的幾何體的三視圖,會識別出簡單的組合體.10、B【解析】
根據(jù)等比數(shù)列的性質:若,則.【詳解】等比數(shù)列中,,,故選B.【點睛】本題考查等比數(shù)列的通項公式和性質,此題也可用通項公式求解.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
因為,且拋物線開口方向向上,所以,不等式的解集是.12、2039【解析】
根據(jù)所給分段函數(shù),依次列舉出當時的值,即可求得的值.【詳解】當時,,當時,,,共1個2.當時,,,共3個2.當時,,,共7個2.當時,,,共15個2.當時,,,共31個2.當時,,,共63個2.當時,,,共127個2.當時,,,共255個2.當時,,,共511個2.當時,,,共1個2.所以由以上可知故答案為:2039【點睛】本題考查了分段函數(shù)的應用,由所給式子列舉出各個項,即可求和,屬于中檔題.13、【解析】
本題利用幾何概型求解.先根據(jù)到點的距離等于1的點構成圖象特征,求出其體積,最后利用體積比即可得點到點,的距離不大于1的概率;【詳解】解:由題意可知,點P到點或的距離都不大于1的點組成的集合分別以、為球心,1為半徑的兩個半球,其體積為,又該圓柱的體積為,則所求概率為.故答案為:【點睛】本題主要考查幾何概型、圓柱和球的體積等基礎知識,考查運算求解能力,考查空間想象力、化歸與轉化思想.關鍵是明確滿足題意的測度為體積比.14、【解析】
根據(jù)求平均數(shù)的公式,得到關于的方程,求得.【詳解】由題意得:,解得:,故填:.【點睛】本題考查求一組數(shù)據(jù)的平均數(shù),考查基本數(shù)據(jù)處理能力.15、【解析】
在中,在中,分別由正弦定理求出,,在中,由余弦定理可得解.【詳解】由圖可得,在中,由正弦定理可得,在中,由正弦定理可得,在中,由余弦定理可得:.故答案為:【點睛】此題考查利用正余弦定理求解三角形,根據(jù)已知邊角關系建立等式求解,此題求AB的長度可在多個三角形中計算,恰當?shù)剡x擇可以減少計算量.16、【解析】
先將轉化為余弦的二倍角公式,再用最小正周期公式求解.【詳解】解:最小正周期為.故答案為【點睛】本題考查二倍角的余弦公式,和最小正周期公式.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)詳見解析(2)詳見解析【解析】
(1)利用中位線定理可得∥,從而得證;(2)先證明,從而有平面,進而可得平面平面.【詳解】(1)因為分別是的中點,所以∥.因為平面,平面,所以∥平面.(2)在直三棱柱中,平面,因為平面,所以.因為,且是的中點,所以.因為,平面,所以平面.因為平面,所以平面平面.【點睛】垂直、平行關系證明中應用轉化與化歸思想的常見類型.(1)證明線面、面面平行,需轉化為證明線線平行.(2)證明線面垂直,需轉化為證明線線垂直.(3)證明線線垂直,需轉化為證明線面垂直.18、(1);(2);(3).【解析】
(1)將點代入函數(shù)的解析式得到,令,由可求出的值,令,由得,兩式相減得出數(shù)列為等比數(shù)列,確定該數(shù)列的公比,利用等比數(shù)列的通項公式可求出數(shù)列的通項公式;(2)求出數(shù)列的通項公式,利用錯位相減法求出數(shù)列的前項和;(3)利用分組求和法與裂項法求出數(shù)列的前項和,由題意得出,判斷出數(shù)列各項的符號,得出數(shù)列的最大值為,利用函數(shù)的單調(diào)性得出該函數(shù)在區(qū)間上的最大值為,然后解不等式可得出實數(shù)的取值范圍.【詳解】(1)將點代入函數(shù)的解析式得到.當時,,即,解得;當時,由得,上述兩式相減得,得,即.所以,數(shù)列是以為首項,以為公比的等比數(shù)列,因此,;(2),,因此,①,②由①②得,所以;(3).令為的前項和,則.因為,,,,當時,,令,,令,則,當時,,此時,數(shù)列為單調(diào)遞減數(shù)列,,則,即,那么當時,數(shù)列為單調(diào)遞減數(shù)列,此時,則.因此,數(shù)列的最大值為.又,函數(shù)單調(diào)遞增,此時,函數(shù)的最大值為.因為對任意的,存在,.所以,解得,因此,實數(shù)的取值范圍是.【點睛】本題考查利用等比數(shù)列前項和求數(shù)列通項,同時也考查了錯位相減法求和以及數(shù)列不等式恒成立問題,解題時要充分利用數(shù)列的單調(diào)性求出數(shù)列的最大項或最小項的值,考查化歸與轉化思想的應用,屬于難題.19、(1)見解析;(2)【解析】
(1)作為棱的中點,連結,,通過證明平面可得.(2)根據(jù)等體積法:可求得.【詳解】(1)證明:連接,.∵,,∴是等邊三角形.作為棱的中點,連結,,∴.∵平面平面,平面平面,平面,∴平面.∵平面,∴.∵,∴是菱形.∴.又,分別為,的中點,∴,∴.又,∴平面.又平面,∴.(2)解:連接,∵,,∴為正三角形.∵為的中點,∴.又∵平面平面,且平面平面,平面,∴平面.∴.設點到平面,的距離.在中,,,則.又∵,∴,則.【點睛】本題考查了直線與平面垂直的判定與性質,考查了等體積法求點面距,屬于中檔題.20、(1);(2)當產(chǎn)量噸,平均生產(chǎn)成本最低.【解析】
(1)根據(jù)函數(shù)連續(xù)性的定義,可得在分段處兩邊的函數(shù)值相等,可得a的值;(2)求出平均成本的表達式,結合二次函數(shù)和基本不等式,可得平均生產(chǎn)成本的最小值點.【詳解】(1)設,由
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版消防工程協(xié)議外施工補充協(xié)議書版B版
- 2025年度企業(yè)HSE內(nèi)部審計與改進合同3篇
- 2024版短期架橋機租賃協(xié)議
- 二零二五年度高端品牌服裝企業(yè)集中采購合作協(xié)議3篇
- 二零二五年度高科技園區(qū)土地承包經(jīng)營合同2篇
- 2024年礦山巖石開采作業(yè)與施工責任協(xié)議版B版
- 二零二五版婚姻財產(chǎn)協(xié)議書明確夫妻財產(chǎn)分配細則3篇
- 二零二五年度智慧農(nóng)業(yè)項目設備采購與農(nóng)技支持合同3篇
- 632項目2024年度技術服務協(xié)議版B版
- 專用汽車貸款協(xié)議模板2024版版B版
- JJF 2122-2024 機動車測速儀現(xiàn)場測速標準裝置校準規(guī)范
- 充電樁四方協(xié)議書范本
- 2024年南京鐵道職業(yè)技術學院單招職業(yè)技能測試題庫及答案解析
- 2023年信息處理技術員教程
- 稽核管理培訓
- 電梯曳引機生銹處理方案
- 電力電纜故障分析報告
- 中國電信網(wǎng)絡資源管理系統(tǒng)介紹
- 2024年浙江首考高考選考技術試卷試題真題(答案詳解)
- 《品牌形象設計》課件
- 倉庫管理基礎知識培訓課件1
評論
0/150
提交評論