上海市奉城高級中學2023-2024學年高三3月份模擬考試數(shù)學試題含解析_第1頁
上海市奉城高級中學2023-2024學年高三3月份模擬考試數(shù)學試題含解析_第2頁
上海市奉城高級中學2023-2024學年高三3月份模擬考試數(shù)學試題含解析_第3頁
上海市奉城高級中學2023-2024學年高三3月份模擬考試數(shù)學試題含解析_第4頁
上海市奉城高級中學2023-2024學年高三3月份模擬考試數(shù)學試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

上海市奉城高級中學2023-2024學年高三3月份模擬考試數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線:的焦距為,焦點到雙曲線的漸近線的距離為,則雙曲線的漸近線方程為()A. B. C. D.2.棱長為2的正方體內(nèi)有一個內(nèi)切球,過正方體中兩條異面直線,的中點作直線,則該直線被球面截在球內(nèi)的線段的長為()A. B. C. D.13.若雙曲線:的一條漸近線方程為,則()A. B. C. D.4.一個正三棱柱的正(主)視圖如圖,則該正三棱柱的側(cè)面積是()A.16 B.12 C.8 D.65.空間點到平面的距離定義如下:過空間一點作平面的垂線,這個點和垂足之間的距離叫做這個點到這個平面的距離.已知平面,,兩兩互相垂直,點,點到,的距離都是3,點是上的動點,滿足到的距離與到點的距離相等,則點的軌跡上的點到的距離的最小值是()A. B.3 C. D.6.關于圓周率,數(shù)學發(fā)展史上出現(xiàn)過許多很有創(chuàng)意的求法,如著名的蒲豐實驗和查理斯實驗.受其啟發(fā),某同學通過下面的隨機模擬方法來估計的值:先用計算機產(chǎn)生個數(shù)對,其中,都是區(qū)間上的均勻隨機數(shù),再統(tǒng)計,能與構(gòu)成銳角三角形三邊長的數(shù)對的個數(shù)﹔最后根據(jù)統(tǒng)計數(shù)來估計的值.若,則的估計值為()A. B. C. D.7.某個命題與自然數(shù)有關,且已證得“假設時該命題成立,則時該命題也成立”.現(xiàn)已知當時,該命題不成立,那么()A.當時,該命題不成立 B.當時,該命題成立C.當時,該命題不成立 D.當時,該命題成立8.中國古代用算籌來進行記數(shù),算籌的擺放形式有縱橫兩種形式(如圖所示),表示一個多位數(shù)時,像阿拉伯記數(shù)一樣,把各個數(shù)位的數(shù)碼從左到右排列,但各位數(shù)碼的籌式需要縱橫相間,其中個位、百位、方位……用縱式表示,十位、千位、十萬位……用橫式表示,則56846可用算籌表示為()A. B. C. D.9.秦九韶是我國南寧時期的數(shù)學家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進的算法.如圖所示的程序框圖給出了利用秦九韶算法求某多項式值的一個實例.若輸入、的值分別為、,則輸出的值為()A. B. C. D.10.函數(shù)的圖象如圖所示,則它的解析式可能是()A. B.C. D.11.若sin(α+3π2A.-12 B.-1312.已知定義在R上的函數(shù)(m為實數(shù))為偶函數(shù),記,,則a,b,c的大小關系為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.近年來,新能源汽車技術(shù)不斷推陳出新,新產(chǎn)品不斷涌現(xiàn),在汽車市場上影響力不斷增大.動力蓄電池技術(shù)作為新能源汽車的核心技術(shù),它的不斷成熟也是推動新能源汽車發(fā)展的主要動力.假定現(xiàn)在市售的某款新能源汽車上,車載動力蓄電池充放電循環(huán)次數(shù)達到2000次的概率為85%,充放電循環(huán)次數(shù)達到2500次的概率為35%.若某用戶的自用新能源汽車已經(jīng)經(jīng)過了2000次充電,那么他的車能夠充電2500次的概率為______.14.已知是定義在上的奇函數(shù),當時,,則不等式的解集用區(qū)間表示為__________.15.已知a,b均為正數(shù),且,的最小值為________.16.在的展開式中,的系數(shù)等于__.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知的內(nèi)角,,的對邊分別為,,,.(1)若,證明:.(2)若,,求的面積.18.(12分)已知函數(shù)存在一個極大值點和一個極小值點.(1)求實數(shù)a的取值范圍;(2)若函數(shù)的極大值點和極小值點分別為和,且,求實數(shù)a的取值范圍.(e是自然對數(shù)的底數(shù))19.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若函數(shù)在上存在兩個極值點,,且,證明.20.(12分)已知A是拋物線E:y2=2px(p>0)上的一點,以點A和點B(2,0)為直徑兩端點的圓C交直線x=1于M,N兩點.(1)若|MN|=2,求拋物線E的方程;(2)若0<p<1,拋物線E與圓(x﹣5)2+y2=9在x軸上方的交點為P,Q,點G為PQ的中點,O為坐標原點,求直線OG斜率的取值范圍.21.(12分)已知(1)當時,判斷函數(shù)的極值點的個數(shù);(2)記,若存在實數(shù),使直線與函數(shù)的圖象交于不同的兩點,求證:.22.(10分)已知,點分別為橢圓的左、右頂點,直線交于另一點為等腰直角三角形,且.(Ⅰ)求橢圓的方程;(Ⅱ)設過點的直線與橢圓交于兩點,總使得為銳角,求直線斜率的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

利用雙曲線:的焦點到漸近線的距離為,求出,的關系式,然后求解雙曲線的漸近線方程.【詳解】雙曲線:的焦點到漸近線的距離為,可得:,可得,,則的漸近線方程為.故選A.【點睛】本題考查雙曲線的簡單性質(zhì)的應用,構(gòu)建出的關系是解題的關鍵,考查計算能力,屬于中檔題.2、C【解析】

連結(jié)并延長PO,交對棱C1D1于R,則R為對棱的中點,取MN的中點H,則OH⊥MN,推導出OH∥RQ,且OH=RQ=,由此能求出該直線被球面截在球內(nèi)的線段的長.【詳解】如圖,MN為該直線被球面截在球內(nèi)的線段連結(jié)并延長PO,交對棱C1D1于R,則R為對棱的中點,取MN的中點H,則OH⊥MN,∴OH∥RQ,且OH=RQ=,∴MH===,∴MN=.故選:C.【點睛】本題主要考查該直線被球面截在球內(nèi)的線段的長的求法,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,是中檔題.3、A【解析】

根據(jù)雙曲線的漸近線列方程,解方程求得的值.【詳解】由題意知雙曲線的漸近線方程為,可化為,則,解得.故選:A【點睛】本小題主要考查雙曲線的漸近線,屬于基礎題.4、B【解析】

根據(jù)正三棱柱的主視圖,以及長度,可知該幾何體的底面正三角形的邊長,然后根據(jù)矩形的面積公式,可得結(jié)果.【詳解】由題可知:該幾何體的底面正三角形的邊長為2所以該正三棱柱的三個側(cè)面均為邊長為2的正方形,所以該正三棱柱的側(cè)面積為故選:B【點睛】本題考查正三棱柱側(cè)面積的計算以及三視圖的認識,關鍵在于求得底面正三角形的邊長,掌握一些常見的幾何體的三視圖,比如:三棱錐,圓錐,圓柱等,屬基礎題.5、D【解析】

建立平面直角坐標系,將問題轉(zhuǎn)化為點的軌跡上的點到軸的距離的最小值,利用到軸的距離等于到點的距離得到點軌跡方程,得到,進而得到所求最小值.【詳解】如圖,原題等價于在直角坐標系中,點,是第一象限內(nèi)的動點,滿足到軸的距離等于點到點的距離,求點的軌跡上的點到軸的距離的最小值.設,則,化簡得:,則,解得:,即點的軌跡上的點到的距離的最小值是.故選:.【點睛】本題考查立體幾何中點面距離最值的求解,關鍵是能夠準確求得動點軌跡方程,進而根據(jù)軌跡方程構(gòu)造不等關系求得最值.6、B【解析】

先利用幾何概型的概率計算公式算出,能與構(gòu)成銳角三角形三邊長的概率,然后再利用隨機模擬方法得到,能與構(gòu)成銳角三角形三邊長的概率,二者概率相等即可估計出.【詳解】因為,都是區(qū)間上的均勻隨機數(shù),所以有,,若,能與構(gòu)成銳角三角形三邊長,則,由幾何概型的概率計算公式知,所以.故選:B.【點睛】本題考查幾何概型的概率計算公式及運用隨機數(shù)模擬法估計概率,考查學生的基本計算能力,是一個中檔題.7、C【解析】

寫出命題“假設時該命題成立,則時該命題也成立”的逆否命題,結(jié)合原命題與逆否命題的真假性一致進行判斷.【詳解】由逆否命題可知,命題“假設時該命題成立,則時該命題也成立”的逆否命題為“假設當時該命題不成立,則當時該命題也不成立”,由于當時,該命題不成立,則當時,該命題也不成立,故選:C.【點睛】本題考查逆否命題與原命題等價性的應用,解題時要寫出原命題的逆否命題,結(jié)合逆否命題的等價性進行判斷,考查邏輯推理能力,屬于中等題.8、B【解析】

根據(jù)題意表示出各位上的數(shù)字所對應的算籌即可得答案.【詳解】解:根據(jù)題意可得,各個數(shù)碼的籌式需要縱橫相間,個位,百位,萬位用縱式表示;十位,千位,十萬位用橫式表示,用算籌表示應為:縱5橫6縱8橫4縱6,從題目中所給出的信息找出對應算籌表示為中的.故選:.【點睛】本題主要考查學生的合情推理與演繹推理,屬于基礎題.9、B【解析】

列出循環(huán)的每一步,由此可得出輸出的值.【詳解】由題意可得:輸入,,,;第一次循環(huán),,,,繼續(xù)循環(huán);第二次循環(huán),,,,繼續(xù)循環(huán);第三次循環(huán),,,,跳出循環(huán);輸出.故選:B.【點睛】本題考查根據(jù)算法框圖計算輸出值,一般要列舉出算法的每一步,考查計算能力,屬于基礎題.10、B【解析】

根據(jù)定義域排除,求出的值,可以排除,考慮排除.【詳解】根據(jù)函數(shù)圖象得定義域為,所以不合題意;選項,計算,不符合函數(shù)圖象;對于選項,與函數(shù)圖象不一致;選項符合函數(shù)圖象特征.故選:B【點睛】此題考查根據(jù)函數(shù)圖象選擇合適的解析式,主要利用函數(shù)性質(zhì)分析,常見方法為排除法.11、B【解析】

由三角函數(shù)的誘導公式和倍角公式化簡即可.【詳解】因為sinα+3π2=3故選B【點睛】本題考查了三角函數(shù)的誘導公式和倍角公式,靈活掌握公式是關鍵,屬于基礎題.12、B【解析】

根據(jù)f(x)為偶函數(shù)便可求出m=0,從而f(x)=﹣1,根據(jù)此函數(shù)的奇偶性與單調(diào)性即可作出判斷.【詳解】解:∵f(x)為偶函數(shù);∴f(﹣x)=f(x);∴﹣1=﹣1;∴|﹣x﹣m|=|x﹣m|;(﹣x﹣m)2=(x﹣m)2;∴mx=0;∴m=0;∴f(x)=﹣1;∴f(x)在[0,+∞)上單調(diào)遞增,并且a=f(||)=f(),b=f(),c=f(2);∵0<<2<;∴a<c<b.故選B.【點睛】本題考查偶函數(shù)的定義,指數(shù)函數(shù)的單調(diào)性,對于偶函數(shù)比較函數(shù)值大小的方法就是將自變量的值變到區(qū)間[0,+∞)上,根據(jù)單調(diào)性去比較函數(shù)值大?。?、填空題:本題共4小題,每小題5分,共20分。13、【解析】

記“某用戶的自用新能源汽車已經(jīng)經(jīng)過了2000次充電”為事件A,“他的車能夠充電2500次”為事件B,即求條件概率:,由條件概率公式即得解.【詳解】記“某用戶的自用新能源汽車已經(jīng)經(jīng)過了2000次充電”為事件A,“他的車能夠充電2500次”為事件B,即求條件概率:故答案為:【點睛】本題考查了條件概率的應用,考查了學生概念理解,數(shù)學應用,數(shù)學運算的能力,屬于基礎題.14、【解析】設,則,由題意可得故當時,由不等式,可得,或求得,或故答案為(15、【解析】

本題首先可以根據(jù)將化簡為,然后根據(jù)基本不等式即可求出最小值.【詳解】因為,所以,當且僅當,即、時取等號,故答案為:.【點睛】本題考查根據(jù)基本不等式求最值,基本不等式公式為,在使用基本不等式的時候要注意“”成立的情況,考查化歸與轉(zhuǎn)化思想,是中檔題.16、7【解析】

由題,得,令,即可得到本題答案.【詳解】由題,得,令,得x的系數(shù).故答案為:7【點睛】本題主要考查二項式定理的應用,屬基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】

(1)由余弦定理及已知等式得出關系,再由正弦定理可得結(jié)論;(2)由余弦定理和已知條件解得,然后由面積公式計算.【詳解】解:(1)由余弦定理得,由得到,由正弦定理得.因為,,所以.(2)由題意及余弦定理可知,①由得,即,②聯(lián)立①②解得,.所以.【點睛】本題考查利用正余弦定理解三角形.考查三角形面積公式,由已知條件本題主要是應用余弦定理求出邊.解題時要注意對條件的分析,確定選用的公式.18、(1);(2).【解析】

(1)首先對函數(shù)求導,根據(jù)函數(shù)存在一個極大值點和一個極小值點求出a的取值范圍;(2)首先求出的值,再根據(jù)求出實數(shù)a的取值范圍.【詳解】(1)函數(shù)的定義域為是,,若有兩個極值點,則方程一定有兩個不等的正根,設為和,且,所以解得,此時,當時,,當時,,當時,,故是極大值點,是極小值點,故實數(shù)a的取值范圍是;(2)由(1)知,,,則,,,由,得,即,令,考慮到,所以可化為,而,所以在上為增函數(shù),由,得,故實數(shù)a的取值范圍是.【點睛】本題主要考查了利用導數(shù)研究函數(shù)的極值點和單調(diào)性,利用函數(shù)單調(diào)性證明不等式,屬于難題.19、(1)若,則在定義域內(nèi)遞增;若,則在上單調(diào)遞增,在上單調(diào)遞減(2)證明見解析【解析】

(1),分,討論即可;(2)由題可得到,故只需證,,即,采用換元法,轉(zhuǎn)化為函數(shù)的最值問題來處理.【詳解】由已知,,若,則在定義域內(nèi)遞增;若,則在上單調(diào)遞增,在上單調(diào)遞減.(2)由題意,對求導可得從而,是的兩個變號零點,因此下證:,即證令,即證:,對求導可得,,,因為故,所以在上單調(diào)遞減,而,從而所以在單調(diào)遞增,所以,即于是【點睛】本題考查利用導數(shù)研究函數(shù)的單調(diào)性以及證明不等式,考查學生邏輯推理能力、轉(zhuǎn)化與化歸能力,是一道有一定難度的壓軸題.20、(1).(2)【解析】

(1)設A的坐標為A(x0,y0),由題意可得圓心C的坐標,求出C到直線x=1的距離.由半個弦長,圓心到直線的距離及半徑構(gòu)成直角三角形可得p的值,進而求出拋物線的方程;(2)將拋物線的方程與圓的方程聯(lián)立可得韋達定理,進而求出中點G的坐標,再求出直線OG的斜率的表達式,換元可得斜率的取值范圍.【詳解】(1)設A(x0,y0)且y02=2px0,則圓心C(),圓C的直徑|AB|,圓心C到直線x=1的距離d=|1|=||,因為|MN|=2,所以()2+d2=()2,即1,y02=2px0,整理可得(2p﹣4)x0=0,所以p=2,所以拋物線的方程為:y2=4x;(2)聯(lián)立拋物線與圓的方程整理可得x2﹣2(5﹣p)x+16=0,△>0,設P(x1,y1),Q(x2,y2),則x1+x2=2(5﹣p),x1x2=16,所以中點G的橫坐標xG=5﹣p,yG(),所以kOG(0<P<1)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論