




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
四川省眉山實驗高級中學2025屆數(shù)學高一下期末聯(lián)考試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知數(shù)列的通項公式是,則等于()A.70 B.28 C.20 D.82.已知F為拋物線C:y2=4x的焦點,過F作兩條互相垂直的直線l1,l2,直線l1與C交于A、B兩點,直線l2與C交于D、E兩點,則|AB|+|DE|的最小值為A.16 B.14 C.12 D.103.已知,,則()A. B. C. D.4.某學校高一、高二、高三年級的學生人數(shù)分別為、、人,該校為了了解本校學生視力情況,現(xiàn)用分層抽樣的方法從該校高中三個年級的學生中抽取容量為的樣本,則應從高三年級抽取的學生人數(shù)為()A. B. C. D.5.某大學數(shù)學系共有本科生1000人,其中一、二、三、四年級的人數(shù)比為4∶3∶2∶1,要用分層抽樣的方法從所有本科生中抽取一個容量為200的樣本,則應抽取三年級的學生人數(shù)為()A.80 B.40 C.60 D.206.已知函數(shù)的部分圖象如圖所示,則函數(shù)的表達式是()A. B.C. D.7.已知向量、的夾角為,,,則()A. B. C. D.8.過正方形的頂點,作平面,若,則平面和平面所成的銳二面角的大小是A. B.C. D.9.如圖,正方體的棱長為,那么四棱錐的體積是()A.B.C.D.10.已知扇形的面積為2cm2,扇形圓心角θ的弧度數(shù)是4,則扇形的周長為()A.2cm B.4cm C.6cm D.8cm二、填空題:本大題共6小題,每小題5分,共30分。11.給出下列四個命題:①在中,若,則;②已知點,則函數(shù)的圖象上存在一點,使得;③函數(shù)是周期函數(shù),且周期與有關,與無關;④設方程的解是,方程的解是,則.其中真命題的序號是______.(把你認為是真命題的序號都填上)12.已知一組樣本數(shù)據(jù),且,平均數(shù),則該組數(shù)據(jù)的標準差為__________.13.在中,,,,點在線段上,若,則的面積是_____.14.若關于的不等式的解集為,則__________15.從甲、乙、丙等5名候選學生中選2名作為青年志愿者,則甲、乙、丙中有2個被選中的概率為________.16.的化簡結果是_________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知集合,數(shù)列是公比為的等比數(shù)列,且等比數(shù)列的前三項滿足.(1)求通項公式;(2)若是等比數(shù)列的前項和,記,試用等比數(shù)列求和公式化簡(用含的式子表示)18.已知的三個內角的對邊分別是,且.(1)求角的大??;(2)若的面積為,求的周長.19.已知是等差數(shù)列的前項和,且,.(1)求通項公式;(2)若,求正整數(shù)的值.20.為了加強“平安校園”建設,有效遏制涉校案件的發(fā)生,保障師生安全,某校決定在學校門口利用一側原有墻體,建造一間墻高為3米,底面為24平方米,且背面靠墻的長方體形狀的校園警務室.由于此警務室的后背靠墻,無需建造費用,甲工程隊給出的報價為:屋子前面新建墻體的報價為每平方米400元,左右兩面新建墻體報價為每平方米300元,屋頂和地面以及其他報價共計14400元.設屋子的左右兩面墻的長度均為x米(3≤x≤6).(Ⅰ)當左右兩面墻的長度為多少時,甲工程隊報價最低?并求出最低報價.(Ⅱ)現(xiàn)有乙工程隊也要參與此警務室的建造競標,其給出的整體報價為1800a(1+x)x元(a>0),若無論左右兩面墻的長度為多少米,乙工程隊都能競標成功,試求a21.已知直線經(jīng)過點,且與軸正半軸交于點,與軸正半軸交于點,為坐標原點.(1)若點到直線的距離為4,求直線的方程;(2)求面積的最小值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
因為,所以,所以=20.故選C.2、A【解析】設,直線的方程為,聯(lián)立方程,得,∴,同理直線與拋物線的交點滿足,由拋物線定義可知,當且僅當(或)時,取等號.點睛:對于拋物線弦長問題,要重點抓住拋物線定義,到定點的距離要想到轉化到準線上,另外,直線與拋物線聯(lián)立,求判別式,利用根與系數(shù)的關系是通法,需要重點掌握.考查最值問題時要能想到用函數(shù)方法和基本不等式進行解決.此題還可以利用弦長的傾斜角表示,設直線的傾斜角為,則,則,所以.3、D【解析】由題意可得,即,則,所以,即,也即,所以,應選答案D.點睛:解答本題的關鍵是借助題設中的條件獲得,進而得到,求得,從而求出使得問題獲解.4、C【解析】
設從高三年級抽取的學生人數(shù)為,根據(jù)總體中和樣本中高三年級所占的比例相等列等式求出的值.【詳解】設從高三年級抽取的學生人數(shù)為,由題意可得,解得,因此,應從高三年級抽取的學生人數(shù)為,故選:C.【點睛】本題考查分層抽樣中的相關計算,解題時要利用總體中每層的抽樣比例相等或者總體或樣本中每層的所占的比相等來列等式求解,考查運算求解能力,屬于基礎題.5、B【解析】試題分析:方法一:由條件可知三年級的同學的人數(shù)為,所以應抽人數(shù)為,方法二:由條件可知樣本中一、二、三、四年級的人數(shù)比為4∶3∶2∶1,因此應抽取三年級的學生人數(shù)為,答案選B.考點:分層抽樣6、D【解析】
根據(jù)函數(shù)的最值求得,根據(jù)函數(shù)的周期求得,根據(jù)函數(shù)圖像上一點的坐標求得,由此求得函數(shù)的解析式.【詳解】由題圖可知,且即,所以,將點的坐標代入函數(shù),得,即,因為,所以,所以函數(shù)的表達式為.故選D.【點睛】本小題主要考查根據(jù)三角函數(shù)圖像求三角函數(shù)的解析式,屬于基礎題.7、B【解析】
利用平面向量數(shù)量積和定義計算出,可得出結果.【詳解】向量、的夾角為,,,則.故選:B.【點睛】本題考查利用平面向量的數(shù)量積來計算平面向量的模,在計算時,一般將模進行平方,利用平面向量數(shù)量積的定義和運算律進行計算,考查計算能力,屬于中等題.8、B【解析】法一:建立如圖(1)所示的空間直角坐標系,不難求出平面APB與平面PCD的法向量分別為n1=(0,1,0),n2=(0,1,1),故平面ABP與平面CDP所成二面角的余弦值為=,故所求的二面角的大小是45°.法二:將其補成正方體.如圖(2),不難發(fā)現(xiàn)平面ABP和平面CDP所成的二面角就是平面ABQP和平面CDPQ所成的二面角,其大小為45°.9、B【解析】
根據(jù)錐體體積公式,求得四棱錐的體積.【詳解】根據(jù)正方體的幾何性質可知平面,所以,故選B.【點睛】本小題主要考查四棱錐體積的計算,屬于基礎題.10、C【解析】設扇形的半徑為R,則R2θ=2,∴R2=1R=1,∴扇形的周長為2R+θ·R=2+4=6(cm).二、填空題:本大題共6小題,每小題5分,共30分。11、①③【解析】
①利用三角形的內角和定理以及正弦函數(shù)的單調性進行判斷;②根據(jù)余弦函數(shù)的有界性可進行判斷;③利用周期函數(shù)的定義,結合余弦函數(shù)的周期性進行判斷;④根據(jù)互為反函數(shù)圖象的對稱性進行判斷.【詳解】①在中,若,則,則,由于正弦函數(shù)在區(qū)間上為增函數(shù),所以,故命題①正確;②已知點,則函數(shù),所以該函數(shù)圖象上不存在一點,使得,故命題②錯誤;③函數(shù)的是周期函數(shù),當時,,該函數(shù)的周期為.當時,,該函數(shù)的周期為.所以,函數(shù)的周期與有關,與無關,命題③正確;④設方程的解是,方程的解是,由,可得,由,可得,則可視為函數(shù)與直線交點的橫坐標,可視為函數(shù)與直線交點的橫坐標,如下圖所示:聯(lián)立,得,可得點,由于函數(shù)的圖象與函數(shù)的圖象關于直線對稱,則直線與函數(shù)和函數(shù)圖象的兩個交點關于點對稱,所以,命題④錯誤.故答案為:①③.【點睛】本題考查三角函數(shù)的周期、正弦函數(shù)單調性的應用、互為反函數(shù)圖象的對稱性的應用以及余弦函數(shù)有界性的應用,考查分析問題和解決問題的能力,屬于中等題.12、11【解析】
根據(jù)題意,利用方差公式計算可得數(shù)據(jù)的方差,進而利用標準差公式可得答案.【詳解】根據(jù)題意,一組樣本數(shù)據(jù),且,平均數(shù),則其方差,則其標準差,故答案為:11.【點睛】本題主要考查平均數(shù)、方差與標準差,屬于基礎題.樣本方差,標準差.13、【解析】
過作于,設,運用勾股定理和三角形的面積公式,計算可得所求值.【詳解】過作于,設,,,,又,可得,即有,可得的面積為.故答案為.【點睛】本題考查解三角形,考查勾股定理的運用,以及三角形的面積公式,考查化簡運算能力,屬于基礎題.14、1【解析】
根據(jù)二次不等式和二次方程的關系,得到是方程的兩根,由根與系數(shù)的關系得到的值.【詳解】因為關于的不等式的解集為所以是方程的兩根,,由根與系數(shù)的關系得,解得【點睛】本題考查一元二次不等式和一元二次方程之間的關系,根與系數(shù)之間的關系,屬于簡單題.15、【解析】因為從5名候選學生中任選2名學生的方法共有10種,而甲、乙、丙中有2個被選中的方法有3種,所以甲、乙、丙中有2個被選中的概率為.16、【解析】原式,因為,所以,且,所以原式.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)觀察式子特點可知,只有2,4,8三項符合等比數(shù)列特征,再根據(jù)題設條件求解即可;(2)根據(jù)等比數(shù)列通項公式表示出,再采用分組求和法化簡的表達式即可【詳解】(1)由題可知,只有2,4,8三項符合等比數(shù)列特征,又,故,故,;(2),,所以【點睛】本題考查等比數(shù)列通項公式的求法,等比數(shù)列前項和公式的用法,分組求和法的應用,屬于中檔題18、(1);(2)【解析】
(1)通過正弦定理得,進而求出,再根據(jù),進而求得的大??;(2)由正弦定理中的三角形面積公式求出,再根據(jù)余弦定理,求得,進而求得的周長.【詳解】(1)由題意知,由正弦定理得,又由,則,所以,又因為,則,所以.(2)由三角形的面積公式,可得,解得,又因為,解得,即,所以,所以的周長為【點睛】本題主要考查了正弦定理、余弦定理和三角形的面積公式的應用,其中在解有關三角形的題目時,要抓住題設條件和利用某個定理的信息,合理應用正弦定理和余弦定理求解是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.19、(1)(2)41【解析】
(1)根據(jù)通項公式先求出公差,再求即可;(2)先表示出,求出的具體值,根據(jù)求即可【詳解】(1)由,,可得,則(2),,則,解得【點睛】本題考查等差數(shù)列通項公式和前項和公式的用法,屬于基礎題20、(Ⅰ)4米時,28800元;(Ⅱ)0<a<12.25.【解析】
(Ⅰ)設甲工程隊的總造價為y元,先求出函數(shù)的解析式,再利用基本不等式求函數(shù)的最值得解;(Ⅱ)由題意可得,1800(x+16x)+14400>從而(x+4)2【詳解】(Ⅰ)設甲工程隊的總造價為y元,則y=3(300×2x+400×1800(x+16當且僅當x=16x,即即當左右兩側墻的長度為4米時,甲工程隊的報價最低為28800元.(Ⅱ)由題意可得,1800(x+16x)+14400>即(x+4)2x>令x+1=t,(x+4)又y=t+9t+6在t∈[4,7]所以0<a<12.25.【點睛】本題主要考查基本不等式的應用,意在
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025標準私人委托合同模板
- 2025深圳市房產交易居間合同
- 廣西河池天峨縣達標名校2024屆中考五模數(shù)學試題含解析
- 夏縣電梯安全管理人員加試試題庫加答案
- 2025年上海貨運從業(yè)資格證模擬考試試題及答案解析
- 建筑工程招投標與合同管理 咨詢合同范本
- 鄉(xiāng)鎮(zhèn)服裝店鋪出租合同樣本
- 2025年育嬰師理論考試試題及答案
- 住宅使用權出讓合同樣本
- 2024年園藝師考試多學科整合探討試題及答案
- 帶狀皰疹課件
- 成語故事-聞雞起舞-課件
- 杭州市市屬事業(yè)單位招聘真題2024
- DEEPSEEK了解及使用攻略高效使用技巧培訓課件
- 2024年河北衡水冀州區(qū)招聘社區(qū)工作者考試真題
- 2025年心理b證筆試試題及答案
- 2024-2025學年人教版七下地理第一單元測驗卷
- 玩具的創(chuàng)業(yè)計劃書
- 共價鍵+周測卷 高二下學期化學選擇性必修2
- 麻疹知識培訓課件
- 精神科護理學焦慮障礙
評論
0/150
提交評論