2025屆豫南九校數(shù)學高一下期末達標檢測試題含解析_第1頁
2025屆豫南九校數(shù)學高一下期末達標檢測試題含解析_第2頁
2025屆豫南九校數(shù)學高一下期末達標檢測試題含解析_第3頁
2025屆豫南九校數(shù)學高一下期末達標檢測試題含解析_第4頁
2025屆豫南九校數(shù)學高一下期末達標檢測試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆豫南九校數(shù)學高一下期末達標檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在平行四邊形中,,若點滿足且,則A.10 B.25 C.12 D.152.在△ABC中,角A,B,C所對的邊分別為a,b,c,若a﹣b=ccosB﹣ccosA,則△ABC的形狀為()A.等腰三角形 B.等邊三角形C.直角三角形 D.等腰三角形或直角三角形3.已知非零向量、,“函數(shù)為偶函數(shù)”是“”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既非充分也非必要條件4.直線傾斜角的范圍是()A.(0,] B.[0,] C.[0,π) D.[0,π]5.P是直線x+y+2=0上任意一點,點Q在圓x-22+yA.2 B.4-2 C.4+26.由小到大排列的一組數(shù)據(jù),,,,,其中每個數(shù)據(jù)都小于,那么對于樣本,,,,,的中位數(shù)可以表示為()A. B. C. D.7.=()A. B. C. D.8.已知等差數(shù)列的前項和為,若,則()A.18 B.13 C.9 D.79.已知是平面內(nèi)兩個互相垂直的向量,且,若向量滿足,則的最大值是()A.1 B. C.3 D.10.數(shù)列1,3,6,10,…的一個通項公式是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,且這三個數(shù)可適當排序后成等差數(shù)列,也可適當排序后成等比數(shù)列,則_______________.12.在直角坐標系中,已知任意角以坐標原點為頂點,以軸的非負半軸為始邊,若其終邊經(jīng)過點,且,定義:,稱“”為“的正余弦函數(shù)”,若,則_________.13.方程在上的解集為______.14.如圖,將全體正整數(shù)排成一個三角形數(shù)陣,按照這樣的排列規(guī)律,第行從右至左的第3個數(shù)為___________.15.設(shè)表示不超過的最大整數(shù),則________16.已知數(shù)列從第項起每項都是它前面各項的和,且,則的通項公式是__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知等比數(shù)列滿足,,等差數(shù)列滿足,,求數(shù)列的前項和.18.已知點,圓.(1)求過點且與圓相切的直線方程;(2)若直線與圓相交于,兩點,且弦的長為,求實數(shù)的值.19.給定常數(shù),定義函數(shù),數(shù)列滿足.(1)若,求及;(2)求證:對任意,;(3)是否存在,使得成等差數(shù)列?若存在,求出所有這樣的,若不存在,說明理由.20.已知函數(shù).(1)求函數(shù)的最小正周期和單調(diào)增區(qū)間;(2)求函數(shù)在區(qū)間上的最小值以及取得該最小值時的值.21.己知,,且函數(shù)的圖像上的任意兩條對稱軸之間的距離的最小值是.(1)求的值:(2)將函數(shù)的圖像向右平移單位后,得到函數(shù)的圖像,求函數(shù)在上的最值,并求取得最值時的的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

先由題意,用,表示出,再由題中條件,根據(jù)向量數(shù)量積的運算,即可求出結(jié)果.【詳解】因為點滿足,所以,則故選C.【點睛】本題主要考查向量數(shù)量積的運算,熟記平面向量基本定理以及數(shù)量積的運算法則即可,屬于常考題型.2、D【解析】

用正弦定理化邊為角,再由誘導(dǎo)公式和兩角和的正弦公式化簡變形可得.【詳解】∵a﹣b=ccosB﹣ccosA,∴,∴,∴,∴或,∴或,故選:D.【點睛】本題考查正弦定理,考查三角形形狀的判斷.解題關(guān)鍵是誘導(dǎo)公式的應(yīng)用.3、C【解析】

根據(jù),求出向量的關(guān)系,再利用必要條件和充分條件的定義,即可判定,得到答案.【詳解】由題意,函數(shù),又為偶函數(shù),所以,則,即,可得,所以,若,則,所以,則,所以函數(shù)是偶函數(shù),所以“函數(shù)為偶函數(shù)”是“”的充要條件.故選C.【點睛】本題主要考查了向量的數(shù)量積的運算,函數(shù)奇偶性的定義及其判定,以及充分條件和必要條件的判定,著重考查了推理與運算能力,屬于基礎(chǔ)題.4、C【解析】試題分析:根據(jù)直線傾斜角的定義判斷即可.解:直線傾斜角的范圍是:[0,π),故選C.5、D【解析】

首先求出圓心到直線的距離與半徑比較大小,得到直線與圓是相離的,根據(jù)圓上的點到直線的距離的最小值等于圓心到直線的距離減半徑,求得結(jié)果.【詳解】因為圓心(2,0)到直線x+y+2=0的距離為d=2+0+2所以直線x+y+2=0與圓(x-2)2所以PQ的最小值等于圓心到直線的距離減去半徑,即PQmin故選D.【點睛】該題考查的是有關(guān)直線與圓的問題,涉及到的知識點有直線與圓的位置關(guān)系,點到直線的距離公式,圓上的點到直線的距離的最小值問題,屬于簡單題目.6、C【解析】

根據(jù)不等式的基本性質(zhì),對樣本數(shù)據(jù)按從小到大排列為,取中間的平均數(shù).【詳解】,,則該組樣本的中位數(shù)為中間兩數(shù)的平均數(shù),即.【點睛】考查基本不等式性質(zhì)運用和中位數(shù)的定義.7、A【解析】

試題分析:由誘導(dǎo)公式,故選A.考點:誘導(dǎo)公式.8、B【解析】

利用等差數(shù)列通項公式、前項和列方程組,求出,.由此能求出.【詳解】解:等差數(shù)列的前項和為,,,,解得,..故選:.【點睛】本題考查等差數(shù)列第7項的值的求法,考查等差數(shù)列的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.9、D【解析】

設(shè)出平面向量的夾角,求出的夾角,最后利用平面向量數(shù)量積的運算公式進行化簡等式,最后利用輔助角公式求出的最大值.【詳解】設(shè)平面向量的夾角為,因為是平面內(nèi)兩個互相垂直的向量,所以平面向量的夾角為,因為是平面內(nèi)兩個互相垂直的向量,所以.,,,其中,顯然當時,有最大值,即.故選:D【點睛】本題考查平面向量數(shù)量積的性質(zhì)及運算,屬于中檔題.10、C【解析】

試題分析:可采用排除法,令和,驗證選項,只有,使得,故選C.考點:數(shù)列的通項公式.二、填空題:本大題共6小題,每小題5分,共30分。11、5【解析】

試題分析:由題意得,為等差數(shù)列時,一定為等差中項,即,為等比數(shù)列時,-2為等比中項,即,所以.考點:等差,等比數(shù)列的性質(zhì)12、【解析】試題分析:根據(jù)正余弦函數(shù)的定義,令,則可以得出,即.可以得出,解得,.那么,,所以故本題正確答案為.考點:三角函數(shù)的概念.13、【解析】

由求出的取值范圍,由可得出的值,從而可得出方程在上的解集.【詳解】,,由,得.,解得,因此,方程在上的解集為.故答案為:.【點睛】本題考查正切方程的求解,解題時要求出角的取值范圍,考查計算能力,屬于基礎(chǔ)題.14、【解析】

由題可以先算出第行的最后一個數(shù),再從右至左算出第3個數(shù)即可.【詳解】由圖得,第行有個數(shù),故前行一共有個數(shù),即第行最后一個數(shù)為,故第行從右至左的第3個數(shù)為.【點睛】本題主要考查等差數(shù)列求和問題,注意從右至左的第3個數(shù)為最后一個數(shù)減2.15、【解析】

根據(jù)1弧度約等于且正弦函數(shù)值域為,故可分別計算求和中的每項的正負即可.【詳解】故答案為:【點睛】本題主要考查了三角函數(shù)的計算,屬于基礎(chǔ)題型.16、【解析】

列舉,可找到是從第項起的等比數(shù)列,由首項和公比即可得出通項公式.【詳解】解:,即,所以是從第項起首項,公比的等比數(shù)列.通項公式為:故答案為:【點睛】本題考查數(shù)列的通項公式,可根據(jù)遞推公式求出.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、【解析】

由等比數(shù)列易得公比和,進而可得等差數(shù)列的首項和公差,代入求和公式計算可得.【詳解】解:∵等比數(shù)列滿足,,

∴公比,

,

,

∴等差數(shù)列中,

∴公差,

∴數(shù)列的前項和.【點睛】本題考查等差數(shù)列的求和公式,涉及等比數(shù)列的通項公式,求出數(shù)列的首項和公差是解決問題的關(guān)鍵,屬基礎(chǔ)題.18、(1)或;(2).【解析】

(1)考慮切線的斜率是否存在,結(jié)合直線與圓相切的的條件d=r,直接求解圓的切線方程即可.(2)利用圓的圓心距、半徑及半弦長的關(guān)系,列出方程,求解a即可.【詳解】(1)由圓的方程得到圓心,半徑.當直線斜率不存在時,直線與圓顯然相切;當直線斜率存在時,設(shè)所求直線方程為,即,由題意得:,解得,∴方程為,即.故過點且與圓相切的直線方程為或.(2)∵弦長為,半徑為2.圓心到直線的距離,∴,解得.【點睛】本題考查直線與圓的位置關(guān)系的綜合應(yīng)用,考查切線方程的求法,考查了垂徑定理的應(yīng)用,考查計算能力.19、見解析【解析】(1)因為,,故,(2)要證明原命題,只需證明對任意都成立,即只需證明若,顯然有成立;若,則顯然成立綜上,恒成立,即對任意的,(3)由(2)知,若為等差數(shù)列,則公差,故n無限增大時,總有此時,即故,即,當時,等式成立,且時,,此時為等差數(shù)列,滿足題意;若,則,此時,也滿足題意;綜上,滿足題意的的取值范圍是.【考點定位】考查數(shù)列與函數(shù)的綜合應(yīng)用,屬難題.20、(1)最小正周期為,單調(diào)遞增區(qū)間為;(2)當時,函數(shù)取最小值.【解析】

(1)利用三角恒等變換思想化簡函數(shù)的解析式為,利用正弦型函數(shù)的周期公式可求得函數(shù)的最小正周期,解不等式可求得函數(shù)的單調(diào)遞增區(qū)間;(2)由計算出的取值范圍,再利用正弦函數(shù)的基本性質(zhì)可求得該函數(shù)的最小值及其對應(yīng)的值.【詳解】(1),所以,函數(shù)的最小正周期為;令,得,所以函數(shù)的單調(diào)增區(qū)間為;(2)當時,,所以,當時,即當時,取得最小值,所以,函數(shù)在區(qū)間上的最小值為,此時.【點睛】本題考查正弦型函數(shù)的最小正周期和單調(diào)區(qū)間、最值的求解,解答的關(guān)鍵就是利用三角恒等變換思想化簡函數(shù)解析式,考查計算能力,屬于中等題.21、(1)1;(1)此時,此時【解析】

(1)由條件利用兩角和差的正弦公式化簡f(x)的解析式,由周期求出ω,由f(2)=2求出的值,可得f(x)的解析式,從而求得f()的值.(1)由條件利用函數(shù)y=Asin(ωx+)的圖象變換規(guī)律求得g(x)的解析式,再根據(jù)正弦函數(shù)的定義域和值域求得g(x)在x∈[]上

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論