版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
廣東省中山市紀(jì)念中學(xué)高三第一次大聯(lián)考新高考數(shù)學(xué)試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知拋物線:的焦點為,過點的直線交拋物線于,兩點,其中點在第一象限,若弦的長為,則()A.2或 B.3或 C.4或 D.5或2.已知是虛數(shù)單位,若,則()A. B.2 C. D.33.執(zhí)行如圖所示的程序框圖后,輸出的值為5,則的取值范圍是().A. B. C. D.4.給出以下四個命題:①依次首尾相接的四條線段必共面;②過不在同一條直線上的三點,有且只有一個平面;③空間中如果一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角必相等;④垂直于同一直線的兩條直線必平行.其中正確命題的個數(shù)是()A.0 B.1 C.2 D.35.棱長為2的正方體內(nèi)有一個內(nèi)切球,過正方體中兩條異面直線,的中點作直線,則該直線被球面截在球內(nèi)的線段的長為()A. B. C. D.16.設(shè),是雙曲線的左,右焦點,是坐標(biāo)原點,過點作的一條漸近線的垂線,垂足為.若,則的離心率為()A. B. C. D.7.已知,,,則()A. B. C. D.8.甲在微信群中發(fā)了一個6元“拼手氣”紅包,被乙?丙?丁三人搶完,若三人均領(lǐng)到整數(shù)元,且每人至少領(lǐng)到1元,則乙獲得“最佳手氣”(即乙領(lǐng)到的錢數(shù)多于其他任何人)的概率是()A. B. C. D.9.某單位去年的開支分布的折線圖如圖1所示,在這一年中的水、電、交通開支(單位:萬元)如圖2所示,則該單位去年的水費開支占總開支的百分比為()A. B. C. D.10.函數(shù)在的圖象大致為()A. B.C. D.11.已知函數(shù),若則()A.f(a)<f(b)<f(c) B.f(b)<f(c)<f(a)C.f(a)<f(c)<f(b) D.f(c)<f(b)<f(a)12.臺球是一項國際上廣泛流行的高雅室內(nèi)體育運動,也叫桌球(中國粵港澳地區(qū)的叫法)、撞球(中國地區(qū)的叫法)控制撞球點、球的旋轉(zhuǎn)等控制母球走位是擊球的一項重要技術(shù),一次臺球技術(shù)表演節(jié)目中,在臺球桌上,畫出如圖正方形ABCD,在點E,F(xiàn)處各放一個目標(biāo)球,表演者先將母球放在點A處,通過擊打母球,使其依次撞擊點E,F(xiàn)處的目標(biāo)球,最后停在點C處,若AE=50cm.EF=40cm.FC=30cm,∠AEF=∠CFE=60°,則該正方形的邊長為()A.50cm B.40cm C.50cm D.20cm二、填空題:本題共4小題,每小題5分,共20分。13.已知,滿足約束條件,則的最小值為______.14.如圖所示,直角坐標(biāo)系中網(wǎng)格小正方形的邊長為1,若向量、、滿足,則實數(shù)的值為_______.15.已知,為雙曲線的左、右焦點,雙曲線的漸近線上存在點滿足,則的最大值為________.16.某種賭博每局的規(guī)則是:賭客先在標(biāo)記有1,2,3,4,5的卡片中隨機摸取一張,將卡片上的數(shù)字作為其賭金;隨后放回該卡片,再隨機摸取兩張,將這兩張卡片上數(shù)字之差的絕對值的1.4倍作為其獎金.若隨機變量ξ1和ξ2分別表示賭客在一局賭博中的賭金和獎金,則D(ξ1)=_____,E(ξ1)﹣E(ξ2)=_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)當(dāng)a=2時,求不等式的解集;(2)設(shè)函數(shù).當(dāng)時,,求的取值范圍.18.(12分)如圖,底面ABCD是邊長為2的菱形,,平面ABCD,,,BE與平面ABCD所成的角為.(1)求證:平面平面BDE;(2)求二面角B-EF-D的余弦值.19.(12分)已知拋物線:,點為拋物線的焦點,焦點到直線的距離為,焦點到拋物線的準(zhǔn)線的距離為,且.(1)求拋物線的標(biāo)準(zhǔn)方程;(2)若軸上存在點,過點的直線與拋物線相交于、兩點,且為定值,求點的坐標(biāo).20.(12分)在角中,角A、B、C的對邊分別是a、b、c,若.(1)求角A;(2)若的面積為,求的周長.21.(12分)設(shè)橢圓:的左、右焦點分別為,,下頂點為,橢圓的離心率是,的面積是.(1)求橢圓的標(biāo)準(zhǔn)方程.(2)直線與橢圓交于,兩點(異于點),若直線與直線的斜率之和為1,證明:直線恒過定點,并求出該定點的坐標(biāo).22.(10分)記數(shù)列的前項和為,已知成等差數(shù)列.(1)證明:數(shù)列是等比數(shù)列,并求的通項公式;(2)記數(shù)列的前項和為,求.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
先根據(jù)弦長求出直線的斜率,再利用拋物線定義可求出.【詳解】設(shè)直線的傾斜角為,則,所以,,即,所以直線的方程為.當(dāng)直線的方程為,聯(lián)立,解得和,所以;同理,當(dāng)直線的方程為.,綜上,或.選C.【點睛】本題主要考查直線和拋物線的位置關(guān)系,弦長問題一般是利用弦長公式來處理.出現(xiàn)了到焦點的距離時,一般考慮拋物線的定義.2、A【解析】
直接將兩邊同時乘以求出復(fù)數(shù),再求其模即可.【詳解】解:將兩邊同時乘以,得故選:A【點睛】考查復(fù)數(shù)的運算及其模的求法,是基礎(chǔ)題.3、C【解析】
框圖的功能是求等比數(shù)列的和,直到和不滿足給定的值時,退出循環(huán),輸出n.【詳解】第一次循環(huán):;第二次循環(huán):;第三次循環(huán):;第四次循環(huán):;此時滿足輸出結(jié)果,故.故選:C.【點睛】本題考查程序框圖的應(yīng)用,建議數(shù)據(jù)比較小時,可以一步一步的書寫,防止錯誤,是一道容易題.4、B【解析】
用空間四邊形對①進行判斷;根據(jù)公理2對②進行判斷;根據(jù)空間角的定義對③進行判斷;根據(jù)空間直線位置關(guān)系對④進行判斷.【詳解】①中,空間四邊形的四條線段不共面,故①錯誤.②中,由公理2知道,過不在同一條直線上的三點,有且只有一個平面,故②正確.③中,由空間角的定義知道,空間中如果一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角相等或互補,故③錯誤.④中,空間中,垂直于同一直線的兩條直線可相交,可平行,可異面,故④錯誤.故選:B【點睛】本小題考查空間點,線,面的位置關(guān)系及其相關(guān)公理,定理及其推論的理解和認(rèn)識;考查空間想象能力,推理論證能力,考查數(shù)形結(jié)合思想,化歸與轉(zhuǎn)化思想.5、C【解析】
連結(jié)并延長PO,交對棱C1D1于R,則R為對棱的中點,取MN的中點H,則OH⊥MN,推導(dǎo)出OH∥RQ,且OH=RQ=,由此能求出該直線被球面截在球內(nèi)的線段的長.【詳解】如圖,MN為該直線被球面截在球內(nèi)的線段連結(jié)并延長PO,交對棱C1D1于R,則R為對棱的中點,取MN的中點H,則OH⊥MN,∴OH∥RQ,且OH=RQ=,∴MH===,∴MN=.故選:C.【點睛】本題主要考查該直線被球面截在球內(nèi)的線段的長的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力,是中檔題.6、B【解析】
設(shè)過點作的垂線,其方程為,聯(lián)立方程,求得,,即,由,列出相應(yīng)方程,求出離心率.【詳解】解:不妨設(shè)過點作的垂線,其方程為,由解得,,即,由,所以有,化簡得,所以離心率.故選:B.【點睛】本題主要考查雙曲線的概念、直線與直線的位置關(guān)系等基礎(chǔ)知識,考查運算求解、推理論證能力,屬于中檔題.7、B【解析】
利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性,將數(shù)據(jù)和做對比,即可判斷.【詳解】由于,,故.故選:B.【點睛】本題考查利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性比較大小,屬基礎(chǔ)題.8、B【解析】
將所有可能的情況全部枚舉出來,再根據(jù)古典概型的方法求解即可.【詳解】設(shè)乙,丙,丁分別領(lǐng)到x元,y元,z元,記為,則基本事件有,,,,,,,,,,共10個,其中符合乙獲得“最佳手氣”的有3個,故所求概率為,故選:B.【點睛】本題主要考查了枚舉法求古典概型的方法,屬于基礎(chǔ)題型.9、A【解析】
由折線圖找出水、電、交通開支占總開支的比例,再計算出水費開支占水、電、交通開支的比例,相乘即可求出水費開支占總開支的百分比.【詳解】水費開支占總開支的百分比為.故選:A【點睛】本題考查折線圖與柱形圖,屬于基礎(chǔ)題.10、C【解析】
先根據(jù)函數(shù)奇偶性排除B,再根據(jù)函數(shù)極值排除A;結(jié)合特殊值即可排除D,即可得解.【詳解】函數(shù),則,所以為奇函數(shù),排除B選項;當(dāng)時,,所以排除A選項;當(dāng)時,,排除D選項;綜上可知,C為正確選項,故選:C.【點睛】本題考查根據(jù)函數(shù)解析式判斷函數(shù)圖像,注意奇偶性、單調(diào)性、極值與特殊值的使用,屬于基礎(chǔ)題.11、C【解析】
利用導(dǎo)數(shù)求得在上遞增,結(jié)合與圖象,判斷出的大小關(guān)系,由此比較出的大小關(guān)系.【詳解】因為,所以在上單調(diào)遞增;在同一坐標(biāo)系中作與圖象,,可得,故.故選:C【點睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查利用函數(shù)的單調(diào)性比較大小,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.12、D【解析】
過點做正方形邊的垂線,如圖,設(shè),利用直線三角形中的邊角關(guān)系,將用表示出來,根據(jù),列方程求出,進而可得正方形的邊長.【詳解】過點做正方形邊的垂線,如圖,設(shè),則,,則,因為,則,整理化簡得,又,得,.即該正方形的邊長為.故選:D.【點睛】本題考查直角三角形中的邊角關(guān)系,關(guān)鍵是要構(gòu)造直角三角形,是中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】
作出可行域,平移基準(zhǔn)直線到處,求得的最小值.【詳解】畫出可行域如下圖所示,由圖可知平移基準(zhǔn)直線到處時,取得最小值為.故答案為:【點睛】本小題主要考查線性規(guī)劃求最值,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.14、【解析】
根據(jù)圖示分析出、、的坐標(biāo)表示,然后根據(jù)坐標(biāo)形式下向量的數(shù)量積為零計算出的取值.【詳解】由圖可知:,所以,又因為,所以,所以.故答案為:.【點睛】本題考查向量的坐標(biāo)表示以及坐標(biāo)形式下向量的數(shù)量積運算,難度較易.已知,若,則有.15、【解析】
設(shè),由可得,整理得,即點在以為圓心,為半徑的圓上.又點到雙曲線的漸近線的距離為,所以當(dāng)雙曲線的漸近線與圓相切時,取得最大值,此時,解得.16、20.2【解析】
分別求出隨機變量ξ1和ξ2的分布列,根據(jù)期望和方差公式計算得解.【詳解】設(shè)a,b∈{1,2,1,4,5},則p(ξ1=a),其ξ1分布列為:ξ112145PE(ξ1)(1+2+1+4+5)=1.D(ξ1)[(1﹣1)2+(2﹣1)2+(1﹣1)2+(4﹣1)2+(5﹣1)2]=2.ξ2=1.4|a﹣b|的可能取值分別為:1.4,2.3,4.2,5.6,P(ξ2=1.4),P(ξ2=2.3),P(ξ2=4.2),P(ξ2=5.6),可得分布列.ξ21.42.34.25.6PE(ξ2)=1.42.34.25.62.3.∴E(ξ1)﹣E(ξ2)=0.2.故答案為:2,0.2.【點睛】此題考查隨機變量及其分布,關(guān)鍵在于準(zhǔn)確求出隨機變量取值的概率,根據(jù)公式準(zhǔn)確計算期望和方差.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】試題分析:(1)當(dāng)時;(2)由等價于,解之得.試題解析:(1)當(dāng)時,.解不等式,得.因此,的解集為.(2)當(dāng)時,,當(dāng)時等號成立,所以當(dāng)時,等價于.①當(dāng)時,①等價于,無解.當(dāng)時,①等價于,解得.所以的取值范圍是.考點:不等式選講.18、(1)證明見解析;(2)【解析】
(1)要證明平面平面BDE,只需在平面內(nèi)找一條直線垂直平面BDE即可;(2)以O(shè)為坐標(biāo)原點,OA,OB,OG所在直線分別為x、y、z軸建立如圖空間直角坐標(biāo)系,分別求出平面BEF的法向量,平面的法向量,算出即可.【詳解】(1)∵平面ABCD,平面ABCD.∴.又∵底面ABCD是菱形,∴.∵,∴平面BDE,設(shè)AC,BD交于O,取BE的中點G,連FG,OG,,,四邊形OCFG是平行四邊形,平面BDE∴平面BDE,又因平面BEF,∴平面平面BDE.(2)以O(shè)為坐標(biāo)原點,OA,OB,OG所在直線分別為x、y、z軸建立如圖空間直角坐標(biāo)系∵BE與平面ABCD所成的角為,,,,,,.,設(shè)平面BEF的法向量為,,,設(shè)平面的法向量設(shè)二面角的大小為..【點睛】本題考查線面垂直證面面垂直、面面所成角的計算,考查學(xué)生的計算能力,解決此類問題最關(guān)鍵是準(zhǔn)確寫出點的坐標(biāo),是一道中檔題.19、(1)(2)【解析】
(1)先分別表示出,然后根據(jù)求解出的值,則的標(biāo)準(zhǔn)方程可求;(2)設(shè)出直線的方程并聯(lián)立拋物線方程得到韋達定理形式,然后根據(jù)距離公式表示出并代入韋達定理形式,由此判斷出為定值時的坐標(biāo).【詳解】(1)由題意可得,焦點,,則,,∴解得.拋物線的標(biāo)準(zhǔn)方程為(2)設(shè),設(shè)點,,顯然直線的斜率不為0.設(shè)直線的方程為聯(lián)立方程,整理可得,,∴,∴要使為定值,必有,解得,∴為定值時,點的坐標(biāo)為【點睛】本題考查拋物線方程的求解以及拋物線中的定值問題,難度一般.(1)處理直線與拋物線相交對應(yīng)的定值問題,聯(lián)立直線方程借助韋達定理形式是常用方法;(2)直線與圓錐曲線的問題中,直線方程的設(shè)法有時能很大程度上起到簡化運算的作用。20、(1);(2)1.【解析】
(1)由正弦定理化簡已知等式可得sinAsinB=sinBcosA,求得tanA=,結(jié)合范圍A∈(0,π),可求A=.(2)利用三角形的面積公式可求bc=8,由余弦定理解得b+c=7,即可得解△ABC的周長的值.【詳解】(1)由題意,在中,因為,由正弦定理,可得sinAsinB=sinBcosA,又因為,可得sinB≠0,所以sinA=cosA,即:tanA=,因為A∈(0,π),所以A=;(2)由(1)可知A=,且a=5,又由△ABC的面積2=bcsinA=bc,解得bc=8,由余弦定理a2=b2+c2-2bccosA,可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東松山職業(yè)技術(shù)學(xué)院《文獻檢索與利用》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東生態(tài)工程職業(yè)學(xué)院《海洋生物資源調(diào)查》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東青年職業(yè)學(xué)院《基礎(chǔ)醫(yī)學(xué)概論Ⅱ3(病理學(xué))》2023-2024學(xué)年第一學(xué)期期末試卷
- 七年級上冊《5.2.1 解一元一次方程 合并同類項》課件與作業(yè)
- 廣東南華工商職業(yè)學(xué)院《飛機裝配技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東嶺南職業(yè)技術(shù)學(xué)院《素描(1)》2023-2024學(xué)年第一學(xué)期期末試卷
- 會計年終工作總結(jié)
- 2025年人教版七年級數(shù)學(xué)寒假復(fù)習(xí) 專題01 有理數(shù)(6重點串講+15考點提升+過關(guān)檢測)
- 【全程復(fù)習(xí)方略】2020年高考化學(xué)課時提升作業(yè)(三十一)-11.1-脂肪烴(人教版-四川專供)
- 【狀元之路】2020-2021學(xué)年高中數(shù)學(xué)人教B版必修3雙基限時練12
- 退休人員公益活動合作合同
- 四年級數(shù)學(xué)(四則混合運算帶括號)計算題專項練習(xí)與答案
- 急診創(chuàng)傷疼痛護理
- 2022年期貨從業(yè)資格《期貨基礎(chǔ)知識》考試題庫(含典型題)
- 浙江省湖州市2023-2024學(xué)年高二上學(xué)期期末調(diào)研測試數(shù)學(xué)試題 含解析
- 商業(yè)街價格策略與收益預(yù)測
- 浙江省杭州市蕭山區(qū)2023-2024學(xué)年高二上學(xué)期1月期末考試物理試題(含答案)
- 江西省九江市2023-2024學(xué)年七年級上學(xué)期語文期末試卷(含答案)
- 浙江省杭州市2023-2024學(xué)年六年級上學(xué)期期末科學(xué)試卷(含答案)1
- 門診護士課件教學(xué)課件
- 公文寫作常見錯誤
評論
0/150
提交評論