廣東省越秀外國語學(xué)校高三第一次模擬考試新高考數(shù)學(xué)試卷及答案解析_第1頁
廣東省越秀外國語學(xué)校高三第一次模擬考試新高考數(shù)學(xué)試卷及答案解析_第2頁
廣東省越秀外國語學(xué)校高三第一次模擬考試新高考數(shù)學(xué)試卷及答案解析_第3頁
廣東省越秀外國語學(xué)校高三第一次模擬考試新高考數(shù)學(xué)試卷及答案解析_第4頁
廣東省越秀外國語學(xué)校高三第一次模擬考試新高考數(shù)學(xué)試卷及答案解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

廣東省越秀外國語學(xué)校高三第一次模擬考試新高考數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù).設(shè),若對任意不相等的正數(shù),,恒有,則實(shí)數(shù)a的取值范圍是()A. B.C. D.2.已知底面為邊長為的正方形,側(cè)棱長為的直四棱柱中,是上底面上的動點(diǎn).給出以下四個結(jié)論中,正確的個數(shù)是()①與點(diǎn)距離為的點(diǎn)形成一條曲線,則該曲線的長度是;②若面,則與面所成角的正切值取值范圍是;③若,則在該四棱柱六個面上的正投影長度之和的最大值為.A. B. C. D.3.已知命題:任意,都有;命題:,則有.則下列命題為真命題的是()A. B. C. D.4.設(shè)曲線在點(diǎn)處的切線方程為,則()A.1 B.2 C.3 D.45.已知函數(shù)的圖像上有且僅有四個不同的點(diǎn)關(guān)于直線的對稱點(diǎn)在的圖像上,則實(shí)數(shù)的取值范圍是()A. B. C. D.6.已知三棱柱()A. B. C. D.7.一個超級斐波那契數(shù)列是一列具有以下性質(zhì)的正整數(shù):從第三項(xiàng)起,每一項(xiàng)都等于前面所有項(xiàng)之和(例如:1,3,4,8,16…).則首項(xiàng)為2,某一項(xiàng)為2020的超級斐波那契數(shù)列的個數(shù)為()A.3 B.4 C.5 D.68.若干年前,某教師剛退休的月退休金為6000元,月退休金各種用途占比統(tǒng)計(jì)圖如下面的條形圖.該教師退休后加強(qiáng)了體育鍛煉,目前月退休金的各種用途占比統(tǒng)計(jì)圖如下面的折線圖.已知目前的月就醫(yī)費(fèi)比剛退休時少100元,則目前該教師的月退休金為().A.6500元 B.7000元 C.7500元 D.8000元9.某人用隨機(jī)模擬的方法估計(jì)無理數(shù)的值,做法如下:首先在平面直角坐標(biāo)系中,過點(diǎn)作軸的垂線與曲線相交于點(diǎn),過作軸的垂線與軸相交于點(diǎn)(如圖),然后向矩形內(nèi)投入粒豆子,并統(tǒng)計(jì)出這些豆子在曲線上方的有粒,則無理數(shù)的估計(jì)值是()A. B. C. D.10.已知復(fù)數(shù),則的虛部是()A. B. C. D.111.復(fù)數(shù)的實(shí)部與虛部相等,其中為虛部單位,則實(shí)數(shù)()A.3 B. C. D.12.展開式中x2的系數(shù)為()A.-1280 B.4864 C.-4864 D.1280二、填空題:本題共4小題,每小題5分,共20分。13.將一顆質(zhì)地均勻的正方體骰子(每個面上分別寫有數(shù)字1,2,3,4,5,6)先后拋擲2次,觀察向上的點(diǎn)數(shù),則點(diǎn)數(shù)之和是6的的概率是___.14.已知雙曲線()的左右焦點(diǎn)分別為,為坐標(biāo)原點(diǎn),點(diǎn)為雙曲線右支上一點(diǎn),若,,則雙曲線的離心率的取值范圍為_____.15.三所學(xué)校舉行高三聯(lián)考,三所學(xué)校參加聯(lián)考的人數(shù)分別為160,240,400,為調(diào)查聯(lián)考數(shù)學(xué)學(xué)科的成績,現(xiàn)采用分層抽樣的方法在這三所學(xué)校中抽取樣本,若在學(xué)校抽取的數(shù)學(xué)成績的份數(shù)為30,則抽取的樣本容量為____________.16.設(shè)集合,(其中e是自然對數(shù)的底數(shù)),且,則滿足條件的實(shí)數(shù)a的個數(shù)為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知動圓恒過點(diǎn),且與直線相切.(1)求圓心的軌跡的方程;(2)設(shè)是軌跡上橫坐標(biāo)為2的點(diǎn),的平行線交軌跡于,兩點(diǎn),交軌跡在處的切線于點(diǎn),問:是否存在實(shí)常數(shù)使,若存在,求出的值;若不存在,說明理由.18.(12分)以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,且在兩種坐標(biāo)系中取相同的長度單位,建立極坐標(biāo)系,判斷直線為參數(shù))與圓的位置關(guān)系.19.(12分)在四棱錐中,底面是邊長為2的菱形,是的中點(diǎn).(1)證明:平面;(2)設(shè)是線段上的動點(diǎn),當(dāng)點(diǎn)到平面距離最大時,求三棱錐的體積.20.(12分)已知.(1)若的解集為,求的值;(2)若對任意,不等式恒成立,求實(shí)數(shù)的取值范圍.21.(12分)已知直線的參數(shù)方程為(,為參數(shù)),曲線的極坐標(biāo)方程為.(1)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,并說明曲線的形狀;(2)若直線經(jīng)過點(diǎn),求直線被曲線截得的線段的長.22.(10分)在直角坐標(biāo)系中,圓的參數(shù)方程為(為參數(shù)),以為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.(1)求圓的極坐標(biāo)方程;(2)直線的極坐標(biāo)方程是,射線與圓的交點(diǎn)為、,與直線的交點(diǎn)為,求線段的長.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

求解的導(dǎo)函數(shù),研究其單調(diào)性,對任意不相等的正數(shù),構(gòu)造新函數(shù),討論其單調(diào)性即可求解.【詳解】的定義域?yàn)?,,?dāng)時,,故在單調(diào)遞減;不妨設(shè),而,知在單調(diào)遞減,從而對任意、,恒有,即,,,令,則,原不等式等價于在單調(diào)遞減,即,從而,因?yàn)?,所以?shí)數(shù)a的取值范圍是故選:D.【點(diǎn)睛】此題考查含參函數(shù)研究單調(diào)性問題,根據(jù)參數(shù)范圍化簡后構(gòu)造新函數(shù)轉(zhuǎn)換為含參恒成立問題,屬于一般性題目.2、C【解析】

①與點(diǎn)距離為的點(diǎn)形成以為圓心,半徑為的圓弧,利用弧長公式,可得結(jié)論;②當(dāng)在(或時,與面所成角(或的正切值為最小,當(dāng)在時,與面所成角的正切值為最大,可得正切值取值范圍是;③設(shè),,,則,即,可得在前后、左右、上下面上的正投影長,即可求出六個面上的正投影長度之和.【詳解】如圖:①錯誤,因?yàn)椋c點(diǎn)距離為的點(diǎn)形成以為圓心,半徑為的圓弧,長度為;②正確,因?yàn)槊婷?,所以點(diǎn)必須在面對角線上運(yùn)動,當(dāng)在(或)時,與面所成角(或)的正切值為最小(為下底面面對角線的交點(diǎn)),當(dāng)在時,與面所成角的正切值為最大,所以正切值取值范圍是;③正確,設(shè),則,即,在前后、左右、上下面上的正投影長分別為,,,所以六個面上的正投影長度之,當(dāng)且僅當(dāng)在時取等號.故選:.【點(diǎn)睛】本題以命題的真假判斷為載體,考查了軌跡問題、線面角、正投影等知識點(diǎn),綜合性強(qiáng),屬于難題.3、B【解析】

先分別判斷命題真假,再由復(fù)合命題的真假性,即可得出結(jié)論.【詳解】為真命題;命題是假命題,比如當(dāng),或時,則不成立.則,,均為假.故選:B【點(diǎn)睛】本題考查復(fù)合命題的真假性,判斷簡單命題的真假是解題的關(guān)鍵,屬于基礎(chǔ)題.4、D【解析】

利用導(dǎo)數(shù)的幾何意義得直線的斜率,列出a的方程即可求解【詳解】因?yàn)?,且在點(diǎn)處的切線的斜率為3,所以,即.故選:D【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,考查運(yùn)算求解能力,是基礎(chǔ)題5、A【解析】

可將問題轉(zhuǎn)化,求直線關(guān)于直線的對稱直線,再分別討論兩函數(shù)的增減性,結(jié)合函數(shù)圖像,分析臨界點(diǎn),進(jìn)一步確定的取值范圍即可【詳解】可求得直線關(guān)于直線的對稱直線為,當(dāng)時,,,當(dāng)時,,則當(dāng)時,,單減,當(dāng)時,,單增;當(dāng)時,,,當(dāng),,當(dāng)時,單減,當(dāng)時,單增;根據(jù)題意畫出函數(shù)大致圖像,如圖:當(dāng)與()相切時,得,解得;當(dāng)與()相切時,滿足,解得,結(jié)合圖像可知,即,故選:A【點(diǎn)睛】本題考查數(shù)形結(jié)合思想求解函數(shù)交點(diǎn)問題,導(dǎo)數(shù)研究函數(shù)增減性,找準(zhǔn)臨界是解題的關(guān)鍵,屬于中檔題6、C【解析】因?yàn)橹比庵?,AB=3,AC=4,AA1=12,AB⊥AC,所以BC=5,且BC為過底面ABC的截面圓的直徑.取BC中點(diǎn)D,則OD⊥底面ABC,則O在側(cè)面BCC1B1內(nèi),矩形BCC1B1的對角線長即為球直徑,所以2R==13,即R=7、A【解析】

根據(jù)定義,表示出數(shù)列的通項(xiàng)并等于2020.結(jié)合的正整數(shù)性質(zhì)即可確定解的個數(shù).【詳解】由題意可知首項(xiàng)為2,設(shè)第二項(xiàng)為,則第三項(xiàng)為,第四項(xiàng)為,第五項(xiàng)為第n項(xiàng)為且,則,因?yàn)?,?dāng)?shù)闹悼梢詾椋患从?個這種超級斐波那契數(shù)列,故選:A.【點(diǎn)睛】本題考查了數(shù)列新定義的應(yīng)用,注意自變量的取值范圍,對題意理解要準(zhǔn)確,屬于中檔題.8、D【解析】

設(shè)目前該教師的退休金為x元,利用條形圖和折線圖列出方程,求出結(jié)果即可.【詳解】設(shè)目前該教師的退休金為x元,則由題意得:6000×15%﹣x×10%=1.解得x=2.故選D.【點(diǎn)睛】本題考查由條形圖和折線圖等基礎(chǔ)知識解決實(shí)際問題,屬于基礎(chǔ)題.9、D【解析】

利用定積分計(jì)算出矩形中位于曲線上方區(qū)域的面積,進(jìn)而利用幾何概型的概率公式得出關(guān)于的等式,解出的表達(dá)式即可.【詳解】在函數(shù)的解析式中,令,可得,則點(diǎn),直線的方程為,矩形中位于曲線上方區(qū)域的面積為,矩形的面積為,由幾何概型的概率公式得,所以,.故選:D.【點(diǎn)睛】本題考查利用隨機(jī)模擬的思想估算的值,考查了幾何概型概率公式的應(yīng)用,同時也考查了利用定積分計(jì)算平面區(qū)域的面積,考查計(jì)算能力,屬于中等題.10、C【解析】

化簡復(fù)數(shù),分子分母同時乘以,進(jìn)而求得復(fù)數(shù),再求出,由此得到虛部.【詳解】,,所以的虛部為.故選:C【點(diǎn)睛】本小題主要考查復(fù)數(shù)的乘法、除法運(yùn)算,考查共軛復(fù)數(shù)的虛部,屬于基礎(chǔ)題.11、B【解析】

利用乘法運(yùn)算化簡復(fù)數(shù)即可得到答案.【詳解】由已知,,所以,解得.故選:B【點(diǎn)睛】本題考查復(fù)數(shù)的概念及復(fù)數(shù)的乘法運(yùn)算,考查學(xué)生的基本計(jì)算能力,是一道容易題.12、A【解析】

根據(jù)二項(xiàng)式展開式的公式得到具體為:化簡求值即可.【詳解】根據(jù)二項(xiàng)式的展開式得到可以第一個括號里出項(xiàng),第二個括號里出項(xiàng),或者第一個括號里出,第二個括號里出,具體為:化簡得到-1280x2故得到答案為:A.【點(diǎn)睛】求二項(xiàng)展開式有關(guān)問題的常見類型及解題策略:(1)求展開式中的特定項(xiàng).可依據(jù)條件寫出第項(xiàng),再由特定項(xiàng)的特點(diǎn)求出值即可.(2)已知展開式的某項(xiàng),求特定項(xiàng)的系數(shù).可由某項(xiàng)得出參數(shù)項(xiàng),再由通項(xiàng)寫出第項(xiàng),由特定項(xiàng)得出值,最后求出其參數(shù).二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先求出基本事件總數(shù)6×6=36,再由列舉法求出“點(diǎn)數(shù)之和等于6”包含的基本事件的個數(shù),由此能求出“點(diǎn)數(shù)之和等于6”的概率.【詳解】基本事件總數(shù)6×6=36,點(diǎn)數(shù)之和是6包括共5種情況,則所求概率是.故答案為【點(diǎn)睛】本題考查古典概率的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意列舉法的合理運(yùn)用.14、【解析】

法一:根據(jù)直角三角形的性質(zhì)和勾股定理得,,,又由雙曲線的定義得,將離心率表示成關(guān)于的式子,再令,則,令對函數(shù)求導(dǎo)研究函數(shù)在上單調(diào)性,可求得離心率的范圍.法二:令,,,,,根據(jù)直角三角形的性質(zhì)和勾股定理得,將離心率表示成關(guān)于角的三角函數(shù),根據(jù)三角函數(shù)的恒等變化轉(zhuǎn)化為關(guān)于的函數(shù),可求得離心率的范圍.【詳解】法一:,,,,,,設(shè),則,令,所以時,,在上單調(diào)遞增,,,.法二:,,令,,,,,,,,,.故答案為:.【點(diǎn)睛】本題考查求雙曲線的離心率的范圍的問題,關(guān)鍵在于將已知條件轉(zhuǎn)化為與雙曲線的有關(guān),從而將離心率表示關(guān)于某個量的函數(shù),屬于中檔題.15、【解析】

某層抽取的人數(shù)等于該層的總?cè)藬?shù)乘以抽樣比.【詳解】設(shè)抽取的樣本容量為x,由已知,,解得.故答案為:【點(diǎn)睛】本題考查隨機(jī)抽樣中的分層抽樣,考查學(xué)生基本的運(yùn)算能力,是一道容易題.16、【解析】

可看出,這樣根據(jù)即可得出,從而得出滿足條件的實(shí)數(shù)的個數(shù)為1.【詳解】解:,或,在同一平面直角坐標(biāo)系中畫出函數(shù)與的圖象,由圖可知與無交點(diǎn),無解,則滿足條件的實(shí)數(shù)的個數(shù)為.故答案為:.【點(diǎn)睛】考查列舉法的定義,交集的定義及運(yùn)算,以及知道方程無解,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)存在,.【解析】

(1)根據(jù)拋物線的定義,容易知其軌跡為拋物線;結(jié)合已知點(diǎn)的坐標(biāo),即可求得方程;(2)由拋物線方程求得點(diǎn)的坐標(biāo),設(shè)出直線的方程,利用導(dǎo)數(shù)求得點(diǎn)的坐標(biāo),聯(lián)立直線的方程和拋物線方程,結(jié)合韋達(dá)定理,求得,進(jìn)而求得與之間的大小關(guān)系,即可求得參數(shù).【詳解】(1)由題意得,點(diǎn)與點(diǎn)的距離始終等于點(diǎn)到直線的距離,由拋物線的定義知圓心的軌跡是以點(diǎn)為焦點(diǎn),直線為準(zhǔn)線的拋物線,則,.∴圓心的軌跡方程為.(2)因?yàn)槭擒壽E上橫坐標(biāo)為2的點(diǎn),由(1)不妨取,所以直線的斜率為1.因?yàn)?,所以設(shè)直線的方程為,.由,得,則在點(diǎn)處的切線斜率為2,所以在點(diǎn)處的切線方程為.由得所以,所以.由消去得,由,得且.設(shè),,則,.因?yàn)辄c(diǎn),,在直線上,所以,,所以,所以.∴故存在,使得.【點(diǎn)睛】本題考查拋物線軌跡方程的求解,以及拋物線中定值問題的求解,涉及導(dǎo)數(shù)的幾何意義,屬綜合性中檔題.18、直線與圓C相切.【解析】

首先把直線和圓轉(zhuǎn)換為直角坐標(biāo)方程,進(jìn)一步利用點(diǎn)到直線的距離的應(yīng)用求出直線和圓的位置關(guān)系.【詳解】直線為參數(shù)),轉(zhuǎn)換為直角坐標(biāo)方程為.圓轉(zhuǎn)換為直角坐標(biāo)方程為,轉(zhuǎn)換為標(biāo)準(zhǔn)形式為,所以圓心到直線,的距離.直線與圓C相切.【點(diǎn)睛】本題考查的知識要點(diǎn):參數(shù)方程極坐標(biāo)方程和直角坐標(biāo)方程之間的轉(zhuǎn)換,直線與圓的位置關(guān)系式的應(yīng)用,點(diǎn)到直線的距離公式的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)換能力及思維能力,屬于基礎(chǔ)題型.19、(1)見解析(2)【解析】

(1)連接與交于,連接,證明即可得證線面平行;(2)首先證明平面(只要取中點(diǎn),可證平面,從而得,同理得),因此點(diǎn)到直線的距離即為點(diǎn)到平面的距離,由平面幾何知識易得最大值,然后可計(jì)算體積.【詳解】(1)證明:連接與交于,連接,因?yàn)槭橇庑?,所以為的中點(diǎn),又因?yàn)闉榈闹悬c(diǎn),所以,因?yàn)槠矫嫫矫妫云矫妫?)解:取中點(diǎn),連接,因?yàn)樗倪呅问橇庑?,,且,所以,又,所以平面,又平面,所以.同理可證:,又,所以平面,所以平面平面,又平面平面,所以點(diǎn)到直線的距離即為點(diǎn)到平面的距離,過作直線的垂線段,在所有垂線段中長度最大為,因?yàn)闉榈闹悬c(diǎn),故點(diǎn)到平面的最大距離為1,此時,為的中點(diǎn),即,所以,所以.【點(diǎn)睛】本題考查證明線面平行,考查求棱錐的體積,掌握面面垂直與線面垂直的判定與性質(zhì)是解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論