湖北省昆明市黃岡實驗學校新高考考前提分數學仿真卷及答案解析_第1頁
湖北省昆明市黃岡實驗學校新高考考前提分數學仿真卷及答案解析_第2頁
湖北省昆明市黃岡實驗學校新高考考前提分數學仿真卷及答案解析_第3頁
湖北省昆明市黃岡實驗學校新高考考前提分數學仿真卷及答案解析_第4頁
湖北省昆明市黃岡實驗學校新高考考前提分數學仿真卷及答案解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖北省昆明市黃岡實驗學校新高考考前提分數學仿真卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若函數的圖象經過點,則函數圖象的一條對稱軸的方程可以為()A. B. C. D.2.若直線與曲線相切,則()A.3 B. C.2 D.3.已知三棱錐且平面,其外接球體積為()A. B. C. D.4.若,滿足約束條件,則的最大值是()A. B. C.13 D.5.寧波古圣王陽明的《傳習錄》專門講過易經八卦圖,下圖是易經八卦圖(含乾、坤、巽、震、坎、離、艮、兌八卦),每一卦由三根線組成(“—”表示一根陽線,“——”表示一根陰線).從八卦中任取兩卦,這兩卦的六根線中恰有四根陰線的概率為()A. B. C. D.6.為了貫徹落實黨中央精準扶貧決策,某市將其低收入家庭的基本情況經過統(tǒng)計繪制如圖,其中各項統(tǒng)計不重復.若該市老年低收入家庭共有900戶,則下列說法錯誤的是()A.該市總有15000戶低收入家庭B.在該市從業(yè)人員中,低收入家庭共有1800戶C.在該市無業(yè)人員中,低收入家庭有4350戶D.在該市大于18歲在讀學生中,低收入家庭有800戶7.已知函數,,若,對任意恒有,在區(qū)間上有且只有一個使,則的最大值為()A. B. C. D.8.已知集合,,則A. B. C. D.9.在聲學中,聲強級(單位:)由公式給出,其中為聲強(單位:).,,那么()A. B. C. D.10.函數(,,)的部分圖象如圖所示,則的值分別為()A.2,0 B.2, C.2, D.2,11.等腰直角三角形的斜邊AB為正四面體側棱,直角邊AE繞斜邊AB旋轉,則在旋轉的過程中,有下列說法:(1)四面體EBCD的體積有最大值和最小值;(2)存在某個位置,使得;(3)設二面角的平面角為,則;(4)AE的中點M與AB的中點N連線交平面BCD于點P,則點P的軌跡為橢圓.其中,正確說法的個數是()A.1 B.2 C.3 D.412.如圖,點E是正方體ABCD-A1B1C1D1的棱DD1的中點,點F,M分別在線段AC,BD1(不包含端點)上運動,則()A.在點F的運動過程中,存在EF//BC1B.在點M的運動過程中,不存在B1M⊥AEC.四面體EMAC的體積為定值D.四面體FA1C1B的體積不為定值二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓的左、右焦點分別為、,過橢圓的右焦點作一條直線交橢圓于點、.則內切圓面積的最大值是_________.14.數列的前項和為,數列的前項和為,滿足,,且.若任意,成立,則實數的取值范圍為__________.15.設實數x,y滿足,則點表示的區(qū)域面積為______.16.西周初數學家商高在公元前1000年發(fā)現勾股定理的一個特例:勾三,股四,弦五.此發(fā)現早于畢達哥拉斯定理五百到六百年.我們把可以構成一個直角三角形三邊的一組正整數稱為勾股數.現從3,4,5,6,7,8,9,10,11,12,13這11個數中隨機抽取3個數,則這3個數能構成勾股數的概率為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)等差數列的前項和為,已知,.(Ⅰ)求數列的通項公式及前項和為;(Ⅱ)設為數列的前項的和,求證:.18.(12分)在三棱錐S-ABC中,∠BAC=∠SBA=∠SCA=90°,∠SAB=45°,∠SAC=60°,D為棱AB的中點,SA=2(I)證明:SD⊥BC;(II)求直線SD與平面SBC所成角的正弦值.19.(12分)已知橢圓的左、右焦點分別為,離心率為,為橢圓上一動點(異于左右頂點),面積的最大值為.(1)求橢圓的方程;(2)若直線與橢圓相交于點兩點,問軸上是否存在點,使得是以為直角頂點的等腰直角三角形?若存在,求點的坐標;若不存在,請說明理由.20.(12分)某校共有學生2000人,其中男生900人,女生1100人,為了調查該校學生每周平均體育鍛煉時間,采用分層抽樣的方法收集該校100名學生每周平均體育鍛煉時間(單位:小時).(1)應抽查男生與女生各多少人?(2)根據收集100人的樣本數據,得到學生每周平均體育鍛煉時間的頻率分布表:時間(小時)[0,1](1,2](2,3](3,4](4,5](5,6]頻率0.050.200.300.250.150.05若在樣本數據中有38名男學生平均每周課外體育鍛煉時間超過2小時,請完成每周平均體育鍛煉時間與性別的列聯(lián)表,并判斷是否有95%的把握認為“該校學生的每周平均體育鍛煉時間與性別有關”?男生女生總計每周平均體育鍛煉時間不超過2小時每周平均體育鍛煉時間超過2小時總計附:K2.P(K2≥k0)0.1000.0500.0100.0052.7063.8416.6357.87921.(12分)已知數列是公比為正數的等比數列,其前項和為,滿足,且成等差數列.(1)求的通項公式;(2)若數列滿足,求的值.22.(10分)已知函數.(1)當時,解不等式;(2)當時,不等式恒成立,求實數的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

由點求得的值,化簡解析式,根據三角函數對稱軸的求法,求得的對稱軸,由此確定正確選項.【詳解】由題可知.所以令,得令,得故選:B【點睛】本小題主要考查根據三角函數圖象上點的坐標求參數,考查三角恒等變換,考查三角函數對稱軸的求法,屬于中檔題.2、A【解析】

設切點為,對求導,得到,從而得到切線的斜率,結合直線方程的點斜式化簡得切線方程,聯(lián)立方程組,求得結果.【詳解】設切點為,∵,∴由①得,代入②得,則,,故選A.【點睛】該題考查的是有關直線與曲線相切求參數的問題,涉及到的知識點有導數的幾何意義,直線方程的點斜式,屬于簡單題目.3、A【解析】

由,平面,可將三棱錐還原成長方體,則三棱錐的外接球即為長方體的外接球,進而求解.【詳解】由題,因為,所以,設,則由,可得,解得,可將三棱錐還原成如圖所示的長方體,則三棱錐的外接球即為長方體的外接球,設外接球的半徑為,則,所以,所以外接球的體積.故選:A【點睛】本題考查三棱錐的外接球體積,考查空間想象能力.4、C【解析】

由已知畫出可行域,利用目標函數的幾何意義求最大值.【詳解】解:表示可行域內的點到坐標原點的距離的平方,畫出不等式組表示的可行域,如圖,由解得即點到坐標原點的距離最大,即.故選:.【點睛】本題考查線性規(guī)劃問題,考查數形結合的數學思想以及運算求解能力,屬于基礎題.5、B【解析】

根據古典概型的概率求法,先得到從八卦中任取兩卦基本事件的總數,再找出這兩卦的六根線中恰有四根陰線的基本事件數,代入公式求解.【詳解】從八卦中任取兩卦基本事件的總數種,這兩卦的六根線中恰有四根陰線的基本事件數有6種,分別是(巽,坤),(兌,坤),(離,坤),(震,艮),(震,坎),(坎,艮),所以這兩卦的六根線中恰有四根陰線的概率是.故選:B【點睛】本題主要考查古典概型的概率,還考查了運算求解的能力,屬于基礎題.6、D【解析】

根據給出的統(tǒng)計圖表,對選項進行逐一判斷,即可得到正確答案.【詳解】解:由題意知,該市老年低收入家庭共有900戶,所占比例為6%,則該市總有低收入家庭900÷6%=15000(戶),A正確,該市從業(yè)人員中,低收入家庭共有15000×12%=1800(戶),B正確,該市無業(yè)人員中,低收入家庭有15000×29%%=4350(戶),C正確,該市大于18歲在讀學生中,低收入家庭有15000×4%=600(戶),D錯誤.故選:D.【點睛】本題主要考查對統(tǒng)計圖表的認識和分析,這類題要認真分析圖表的內容,讀懂圖表反映出的信息是解題的關鍵,屬于基礎題.7、C【解析】

根據的零點和最值點列方程組,求得的表達式(用表示),根據在上有且只有一個最大值,求得的取值范圍,求得對應的取值范圍,由為整數對的取值進行驗證,由此求得的最大值.【詳解】由題意知,則其中,.又在上有且只有一個最大值,所以,得,即,所以,又,因此.①當時,,此時取可使成立,當時,,所以當或時,都成立,舍去;②當時,,此時取可使成立,當時,,所以當或時,都成立,舍去;③當時,,此時取可使成立,當時,,所以當時,成立;綜上所得的最大值為.故選:C【點睛】本小題主要考查三角函數的零點和最值,考查三角函數的性質,考查化歸與轉化的數學思想方法,考查分類討論的數學思想方法,屬于中檔題.8、C【解析】分析:根據集合可直接求解.詳解:,,故選C點睛:集合題也是每年高考的必考內容,一般以客觀題形式出現,一般解決此類問題時要先將參與運算的集合化為最簡形式,如果是“離散型”集合可采用Venn圖法解決,若是“連續(xù)型”集合則可借助不等式進行運算.9、D【解析】

由得,分別算出和的值,從而得到的值.【詳解】∵,∴,∴,當時,,∴,當時,,∴,∴,故選:D.【點睛】本小題主要考查對數運算,屬于基礎題.10、D【解析】

由題意結合函數的圖象,求出周期,根據周期公式求出,求出,根據函數的圖象過點,求出,即可求得答案【詳解】由函數圖象可知:,函數的圖象過點,,則故選【點睛】本題主要考查的是的圖像的運用,在解答此類題目時一定要挖掘圖像中的條件,計算三角函數的周期、最值,代入已知點坐標求出結果11、C【解析】

解:對于(1),當CD⊥平面ABE,且E在AB的右上方時,E到平面BCD的距離最大,當CD⊥平面ABE,且E在AB的左下方時,E到平面BCD的距離最小,∴四面體E﹣BCD的體積有最大值和最小值,故(1)正確;對于(2),連接DE,若存在某個位置,使得AE⊥BD,又AE⊥BE,則AE⊥平面BDE,可得AE⊥DE,進一步可得AE=DE,此時E﹣ABD為正三棱錐,故(2)正確;對于(3),取AB中點O,連接DO,EO,則∠DOE為二面角D﹣AB﹣E的平面角,為θ,直角邊AE繞斜邊AB旋轉,則在旋轉的過程中,θ∈[0,π),∠DAE∈[,π),所以θ≥∠DAE不成立.(3)不正確;對于(4)AE的中點M與AB的中點N連線交平面BCD于點P,P到BC的距離為:dP﹣BC,因為<1,所以點P的軌跡為橢圓.(4)正確.故選:C.點睛:該題考查的是有關多面體和旋轉體對應的特征,以幾何體為載體,考查相關的空間關系,在解題的過程中,需要認真分析,得到結果,注意對知識點的靈活運用.12、C【解析】

采用逐一驗證法,根據線線、線面之間的關系以及四面體的體積公式,可得結果.【詳解】A錯誤由平面,//而與平面相交,故可知與平面相交,所以不存在EF//BC1B錯誤,如圖,作由又平面,所以平面又平面,所以由//,所以,平面所以平面,又平面所以,所以存在C正確四面體EMAC的體積為其中為點到平面的距離,由//,平面,平面所以//平面,則點到平面的距離即點到平面的距離,所以為定值,故四面體EMAC的體積為定值錯誤由//,平面,平面所以//平面,則點到平面的距離即為點到平面的距離,所以為定值所以四面體FA1C1B的體積為定值故選:C【點睛】本題考查線面、線線之間的關系,考驗分析能力以及邏輯推理能力,熟練線面垂直與平行的判定定理以及性質定理,中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】令直線:,與橢圓方程聯(lián)立消去得,可設,則,.可知,又,故.三角形周長與三角形內切圓的半徑的積是三角形面積的二倍,則內切圓半徑,其面積最大值為.故本題應填.點睛:圓錐曲線中最值與范圍的求法有兩種:(1)幾何法:若題目的條件和結論能明顯體現幾何特征及意義,則考慮利用圖形性質來解決,這就是幾何法.(2)代數法:若題目的條件和結論能體現一種明確的函數,則可首先建立起目標函數,再求這個函數的最值,求函數最值的常用方法有配方法,判別式法,重要不等式及函數的單調性法等.14、【解析】

當時,,可得到,再用累乘法求出,再求出,根據定義求出,再借助單調性求解.【詳解】解:當時,,則,,當時,,,,,,(當且僅當時等號成立),,故答案為:.【點睛】本題主要考查已知求,累乘法,主要考查計算能力,屬于中檔題.15、【解析】

先畫出滿足條件的平面區(qū)域,求出交點坐標,利用定積分即可求解.【詳解】畫出實數x,y滿足表示的平面區(qū)域,如圖(陰影部分):則陰影部分的面積,故答案為:【點睛】本題考查了定積分求曲邊梯形的面積,考查了微積分基本定理,屬于基礎題.16、【解析】

由組合數結合古典概型求解即可【詳解】從11個數中隨機抽取3個數有種不同的方法,其中能構成勾股數的有共三種,所以,所求概率為.故答案為【點睛】本題考查古典概型與數學文化,考查組合問題,數據處理能力和應用意識.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ),(Ⅱ)見解析【解析】

(Ⅰ)根據等差數列公式直接計算得到答案.(Ⅱ),根據裂項求和法計算得到得到證明.【詳解】(Ⅰ)等差數列的公差為,由,得,,即,,解得,.∴,.(Ⅱ),∴,∴,即.【點睛】本題考查了等差數列的基本量的計算,裂項求和,意在考查學生對于數列公式方法的靈活運用.18、(I)證明見解析;(II)1【解析】

(I)過D作DE⊥BC于E,連接SE,根據勾股定理得到SE⊥BC,DE⊥BC得到BC⊥平面SED,得到證明.(II)過點D作DF⊥SE于F,證明DF⊥平面SBC,故∠ESD為直線SD與平面SBC所成角,計算夾角得到答案.【詳解】(I)過D作DE⊥BC于E,連接SE,根據角度的垂直關系易知:AC=1,AB=SB=2,CS=CB=3,故DE=BDsin∠CBD=6根據余弦定理:13+SE2-2故SE⊥BC,DE⊥BC,SE∩DE=E,故BC⊥平面SED,SD?平面SED,故SD⊥BC.(II)過點D作DF⊥SE于F,BC⊥平面SED,DF?平面SED,故DF⊥BC,DF⊥SE,BC∩SE=E,故DF⊥平面SBC,故∠ESD為直線SD與平面SBC所成角,SD2=S故sin∠ESD=【點睛】本題考查了線線垂直,線面夾角,意在考查學生的計算能力和空間想象能力.19、(1);(2)見解析【解析】

(1)由面積最大值可得,又,以及,解得,即可得到橢圓的方程,(2)假設軸上存在點,是以為直角頂點的等腰直角三角形,設,,線段的中點為,根據韋達定理求出點的坐標,再根據,,即可求出的值,可得點的坐標.【詳解】(1)面積的最大值為,則:又,,解得:,橢圓的方程為:(2)假設軸上存在點,是以為直角頂點的等腰直角三角形設,,線段的中點為由,消去可得:,解得:∴,,依題意有,由可得:,可得:由可得:,代入上式化簡可得:則:,解得:當時,點滿足題意;當時,點滿足題意故軸上存在點,使得是以為直角頂點的等腰直角三角形【點睛】本題考查了橢圓的方程,直線和橢圓的位置關系,斜率公式,考查了運算能力和轉化能力,屬于中檔題.20、(1)男生人數為人,女生人數55人.(2)列聯(lián)表答案見解析,有95%的把握認為“該校學生的每周平均體育鍛煉時間與性別有關.【解析】

(1)求出男女比例,按比例分配即可;(2)根據題意結合頻率分布表,先求出二聯(lián)表中數值,再結合公式計算,利用表格數據對比判斷即可【詳解】(1)因為男生人數:女生人數=900:1100=9:11,所以男生人數為,女生人

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論