




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025屆福建省福州第四中學高一數(shù)學第二學期期末調(diào)研試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知圓錐的高為3,底面半徑為,若該圓錐的頂點與底面的圓周都在同一個球面上,則這個球的體積等于()A.π B.πC.16π D.32π2.某三棱錐的三視圖如圖所示,該三棱錐的外接球表面積為()A. B. C. D.3.已知平面向量,,若與同向,則實數(shù)的值是()A. B. C. D.4.把一塊長是10,寬是8,高是6的長方形木料削成一個體積最大的球,這個球的體積等于()A. B.480 C. D.5.在正方體中,當點在線段(與,不重合)上運動時,總有:①;②平面平面;③平面;④.以上四個推斷中正確的是()A.①② B.①④ C.②④ D.③④6.已知關于的不等式的解集為,則的值為()A.4 B.5 C.7 D.97.已知為等差數(shù)列,,,則等于().A. B. C. D.8.已知角的終邊過點,則()A. B. C. D.9.《九章算術》是我國古代的數(shù)學名著,書中有如下問題:“今有五人分五錢,令上二人所得與下三人等.問各得幾何.”其意思為“已知甲、乙、丙、丁、戊五人分5錢,甲、乙兩人所得與丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差數(shù)列.問五人各得多少錢?”(“錢”是古代的一種重量單位).這個問題中,甲所得為()A.錢 B.錢 C.錢 D.錢10.如圖所示四棱錐的底面為正方形,平面則下列結論中不正確的是()A. B.平面C.直線與平面所成的角等于30° D.SA與平面SBD所成的角等于SC與平面SBD所成的角二、填空題:本大題共6小題,每小題5分,共30分。11.在邊長為2的正三角形ABC內(nèi)任取一點P,則使點P到三個頂點的距離至少有一個小于1的概率是________.12.已知向量,向量,若與垂直,則__________.13.如圖所示為函數(shù)的部分圖像,其中、分別是函數(shù)圖像的最高點和最低點,且,那么________.14.已知函數(shù)是定義域為的偶函數(shù).當時,,關于的方程,有且僅有5個不同實數(shù)根,則實數(shù)的取值范圍是_____.15.已知實數(shù)滿足則的最小值為__________.16.在等差數(shù)列中,,,則的值為_______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,某污水處理廠要在一個矩形污水處理池的池底水平鋪設污水凈化管道(三條邊,是直角頂點)來處理污水,管道越長,污水凈化效果越好.要求管道的接口是的中點,分別落在線段上,已知米,米,記.(1)試將污水凈化管道的總長度(即的周長)表示為的函數(shù),并求出定義域;(2)問取何值時,污水凈化效果最好?并求出此時管道的總長度.18.將函數(shù)的圖像向右平移1個單位,得到函數(shù)的圖像.(1)求的單調(diào)遞增區(qū)間;(3)設為坐標原點,直線與函數(shù)的圖像自左至右相交于點,,,求的值.19.如果有窮數(shù)列(m為正整數(shù))滿足,即,那么我們稱其為對稱數(shù)列.(1)設數(shù)列是項數(shù)為7的對稱數(shù)列,其中,為等差數(shù)列,且,依次寫出數(shù)列的各項;(2)設數(shù)列是項數(shù)為(正整數(shù))的對稱數(shù)列,其中是首項為50,公差為-4的等差數(shù)列.記數(shù)列的各項和為數(shù)列,當k為何值時,取得最大值?并求出此最大值;(3)對于確定的正整數(shù),寫出所有項數(shù)不超過2m的對稱數(shù)列,使得依次為該數(shù)列中連續(xù)的項.當時,求其中一個數(shù)列的前2015項和.20.足球,有“世界第一運動的美譽,是全球體育界最具影響力的單項體育運動之一.足球傳球是足球運動技術之一,是比賽中組織進攻、組織戰(zhàn)術配合和進行射門的主要手段.足球截球也是足球運動技術的一種,是將對方控制或傳出的球占為己有,或破壞對方對球的控制的技術,是比賽中由守轉攻的主要手段.這兩種運動技術都需要球運動員的正確判斷和選擇.現(xiàn)有甲、乙兩隊進行足球友誼賽,A、B兩名運動員是甲隊隊員,C是乙隊隊員,B在A的正西方向,A和B相距20m,C在A的正北方向,A和C相距14m.現(xiàn)A沿北偏西60°方向水平傳球,球速為10m/s,同時B沿北偏西30°方向以10m/s的速度前往接球,C同時也以10m/s的速度前去截球.假設球與B、C都在同一平面運動,且均保持勻速直線運動.(1)若C沿南偏西60°方向前去截球,試判斷B能否接到球?請說明理由.(2)若C改變(1)的方向前去截球,試判斷C能否球成功?請說明理由.21.已知數(shù)列滿足=(1)若求數(shù)列的通項公式;(2)若==對一切恒成立求實數(shù)取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
作軸截面,圓錐的軸截面是等腰三角形,外接球的截面是圓為球的大圓是的外接圓,由圖可得球的半徑與圓錐的關系.【詳解】如圖,作軸截面,圓錐的軸截面是等腰三角形,的外接圓是球的大圓,設該圓錐的外接球的半徑為R,依題意得,R2=(3-R)2+()2,解得R=2,所以所求球的體積V=πR3=π×23=π,故選B.【點睛】本題考查球的體積,關鍵是確定圓錐的外接球與圓錐之間的關系,即球半徑與圓錐的高和底面半徑之間的聯(lián)系,而這個聯(lián)系在其軸截面中正好體現(xiàn).2、D【解析】
根據(jù)三視圖還原幾何體,由三棱錐的幾何特征即可求出其外接球表面積.【詳解】根據(jù)三視圖可知,該幾何體如圖所示:所以該幾何體的外接球,即是長方體的外接球.因為,所以外接球直徑.故該三棱錐的外接球表面積為.故選:D.【點睛】本題主要考查由三視圖還原幾何體,并計算其外接球的表面積,意在考查學生的直觀想象能力和數(shù)學運算能力,屬于基礎題.3、D【解析】
通過同向向量的性質即可得到答案.【詳解】與同向,,解得或(舍去),故選D.【點睛】本題主要考查平行向量的坐標運算,但注意同向,難度較小.4、A【解析】
由題意知,此球是棱長為6的正方體的內(nèi)切球,根據(jù)其幾何特征知,此球的直徑與正方體的棱長是相等的,故可得球的直徑為6,再由球的體積公式求解即可.【詳解】解:由已知可得球的直徑為6,故半徑為3,其體積是,故選:.【點睛】本題考查長方體內(nèi)切球的幾何特征,以及球的體積公式,屬于基礎題.5、D【解析】
每個結論可以通過是否能證偽排除即可.【詳解】①因為,與相交,所以①錯.②很明顯不對,只有當E在中點時才滿足條件.③易得平面平面,而AE平面,所以平面;④因為平面,而AE平面,所以.故選D【點睛】此題考查空間圖像位置關系,一般通過特殊位置排除即可,屬于較易題目.6、D【解析】
將原不等式化簡后,根據(jù)不等式的解集列方程組,求得的值,進而求得的值.【詳解】由得,依題意上述不等式的解集為,故,解得(舍去),故.故選:D.【點睛】本小題主要考查類似:已知一元二次不等式解集求參數(shù),考查函數(shù)與方程的思想,屬于基礎題.7、B【解析】
利用等差數(shù)列的通項公式,列出方程組,求出首項和公差,由此能求出.【詳解】解:為等差數(shù)列,,,,,,,,,.故選:【點睛】本題考查等差數(shù)列的第20項的求法,是基礎題,解題時要認真審題,注意等差數(shù)列的性質的合理運用.8、D【解析】
首先根據(jù)三角函數(shù)的定義,求得,之后應用三角函數(shù)的誘導公式,化簡求得結果.【詳解】由已知得,則.故選D【點睛】該題考查的是有關三角函數(shù)的化簡求值問題,涉及到的知識點有三角函數(shù)的定義,誘導公式,屬于簡單題目.9、B【解析】設甲、乙、丙、丁、戊所得錢分別為,則,解得,又,則,故選B.10、C【解析】
根據(jù)空間中垂直關系的判定和性質,平行關系的判定和性質,以及線面角的相關知識,對選項進行逐一判斷即可.【詳解】對A:因為底面ABCD為正方形,故ACBD,又SD底面ABCD,AC平面ABCD,故SDAC,又BD平面SBD,SD平面SBD,故AC平面SBD,又SB平面SBD,故AC.故A正確;對B:因為底面ABCD為正方形,故AB//CD,又CD平面SCD,故AB//平面SCD.故B正確.對C:由A中推導可知AC平面SBD,故取AC與BD交點為O,連接SO,如圖所示:則即為所求線面角,但該三角形中邊長關系不確定,故線面角的大小不定,故C錯誤;對D:由AC平面SBD,故取AC與BD交點為O,連接SO,則即為SA和SC與平面SBD所成的角,因為,故,故D正確.綜上所述,不正確的是C.故選:C.【點睛】本題綜合考查線面垂直的性質和判定,線面平行的判定,線面角的求解,屬綜合基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】以A,B,C為圓心,以1為半徑作圓,與△ABC交出三個扇形,當P落在其內(nèi)時符合要求,∴P==.12、;【解析】
由計算可得.【詳解】,∵與垂直,∴,.故答案為-1.【點睛】本題考查向量垂直的坐標運算.由向量垂直得其數(shù)量積為0,本題屬于基礎題.13、【解析】
由圖可知:,因為,由周期公式得到,結合以及誘導公式即可求解.【詳解】由圖可知:,因為所以,即由題意可知:,即故答案為:【點睛】本題主要考查了正弦型函數(shù)的圖像的性質以及求值,關鍵是從圖像得出周期,最值等,屬于基礎題.14、.【解析】
令,則原方程為,根據(jù)原方程有且僅有5個不同實數(shù)根,則有5個不同的解,結合圖像特征,求出的值或范圍,即為方程解的值或范圍,轉化為范圍,即可求解.【詳解】令,則原方程為,當時,,且為偶函數(shù),做出圖像,如下圖所示:當時,有一個解;當或,有兩個解;當時,有四個解;當或時,無解.,有且僅有5個不同實數(shù)根,關于的方程有一個解為,,另一個解為,在區(qū)間上,所以,實數(shù)的取值范圍是.故答案為:.【點睛】本題考查復合方程根的個數(shù)求參數(shù)范圍,考查了分段函數(shù)的應用,利用換元法結合的函數(shù)的奇偶性的對稱性,利用數(shù)形結合是解題的關鍵,屬于難題.15、【解析】
本題首先可以根據(jù)題意繪出不等式組表示的平面區(qū)域,然后結合目標函數(shù)的幾何性質,找出目標函數(shù)取最小值所過的點,即可得出結果。【詳解】繪制不等式組表示的平面區(qū)域如圖陰影部分所示,結合目標函數(shù)的幾何意義可知,目標函數(shù)在點處取得最小值,即?!军c睛】本題考查根據(jù)不等式組表示的平面區(qū)域來求目標函數(shù)的最值,能否繪出不等式組表示的平面區(qū)域是解決本題的關鍵,考查數(shù)形結合思想,是簡單題。16、.【解析】
設等差數(shù)列的公差為,根據(jù)題中條件建立、的方程組,求出、的值,即可求出的值.【詳解】設等差數(shù)列的公差為,所以,解得,因此,,故答案為:.【點睛】本題考查等差數(shù)列的項的計算,常利用首項和公差建立方程組,結合通項公式以及求和公式進行計算,考查方程思想,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),;(2)或時,L取得最大值為米..【解析】
(1)解直角三角形求得得EH、FH、EF的解析式,再由L=EH+FH+EF得到污水凈化管道的長度L的函數(shù)解析式,并注明θ的范圍.(2)設sinθ+cosθ=t,根據(jù)函數(shù)L=在[,]上是單調(diào)減函數(shù),可求得L的最大值.所以當時,即
或
時,L取得最大值為米.【詳解】由題意可得,,,由于
,,所以,,,即,設,則,由于,由于在上是單調(diào)減函數(shù),當時,即或時,L取得最大值為米.【點睛】三角函數(shù)值域得不同求法:1.利用和的值域直接求2.把所有的三角函數(shù)式變換成的形式求值域3.通過換元,轉化成其他類型函數(shù)求值域18、(1)();(2)【解析】
(1)通過“左加右減”可得到函數(shù)的解析式,從而求得的單調(diào)遞增區(qū)間;(2)先求得直線與軸的交點為,則,又,關于點對稱,所以,從而.【詳解】(1)令,,的單調(diào)遞增區(qū)間是()(2)直線與軸的交點為,即為函數(shù)的對稱中心,且,關于點對稱,【點睛】本題主要考查三角函數(shù)平移,增減區(qū)間的求解,對稱中心的性質及向量的基本運算,意在考查學生的分析能力和計算能力.19、(1)2,5,8,11,8,5,2;(2);(3)答案見詳解【解析】
(1)求出前四項的公差,然后寫出即可(2)先算出,然后(3)依題意,可寫出所有項數(shù)不超過2m的對稱數(shù)列,然后求出第一個數(shù)列的【詳解】(1)設數(shù)列的公差為,則,解得所以各項為2,5,8,11,8,5,2(2)因為是首項為50,公差為-4的等差數(shù)列所以所以所以當時取得最大值,為626(3)所有可能的對稱數(shù)列是①,②,③,④,對于①,當時,當時所以【點睛】本題是一道數(shù)列的新定義的題,考查了數(shù)列的求和和最值問題.2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 詐騙對公賬戶管理辦法
- 廣電行業(yè)統(tǒng)計管理辦法
- 福建建設動態(tài)管理辦法
- 肥胖課件下載
- 高二數(shù)學導數(shù)數(shù)學試卷
- 分班考數(shù)學試卷
- 二中廣雅初三數(shù)學試卷
- 二數(shù)下數(shù)學試卷
- 廣安市2024年二診數(shù)學試卷
- 2025年04月浙江省衢州市衢江區(qū)衛(wèi)生健康系統(tǒng)招引高層次緊缺人才27人筆試歷年專業(yè)考點(難、易錯點)附帶答案詳解
- 梁小民版西方經(jīng)濟學筆記
- TCCES 44-2024 老舊房屋結構安全監(jiān)測技術標準
- 廣東省2025年普通高等學校招生全國統(tǒng)一考試模擬測試(一)物理試題及答案
- 2024年汽車維修工技能理論考試題庫含答案(滿分必刷)
- 腸息肉病人護理查房
- 2025年云南紅河弘毅農(nóng)業(yè)發(fā)展限責任公司第一批員工招聘10人自考難、易點模擬試卷(共500題附帶答案詳解)
- 林下中藥材種植項目可行性研究報告
- 計量知識宣傳培訓課件
- 汽車4s店管理制度
- 電腦常見故障維修與電腦保養(yǎng)課件
- 電商平臺商家入駐流程及風險控制標準
評論
0/150
提交評論