版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
北京市朝陽區(qū)陳經(jīng)倫中學(xué)2025屆高一下數(shù)學(xué)期末復(fù)習(xí)檢測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知數(shù)列共有項,滿足,且對任意、,有仍是該數(shù)列的某一項,現(xiàn)給出下列個命題:(1);(2);(3)數(shù)列是等差數(shù)列;(4)集合中共有個元素.則其中真命題的個數(shù)是()A. B. C. D.2.已知角以坐標(biāo)系中為始邊,終邊與單位圓交于點,則的值為()A. B. C. D.3.下列條件:①;②;③;其中一定能推出成立的有()A.0個 B.3個 C.2個 D.1個4.如圖,設(shè)是正六邊形的中心,則與相等的向量為()A. B. C. D.5.直線與直線平行,則()A. B.或 C. D.或6.某公司的廣告費支出與銷售額(單位:萬元)之間有下列對應(yīng)數(shù)據(jù):已知對呈線性相關(guān)關(guān)系,且回歸方程為,工作人員不慎將表格中的第一個數(shù)據(jù)遺失,該數(shù)據(jù)為()A.28 B.30 C.32 D.357.有一個內(nèi)角為120°的三角形的三邊長分別是m,m+1,m+2,則實數(shù)m的值為()A.1 B. C.2 D.8.已知,則的最小值為A.3 B.4 C.5 D.69.有一個容量為200的樣本,樣本數(shù)據(jù)分組為,,,,,其頻率分布直方圖如圖所示.根據(jù)樣本的頻率分布直方圖估計樣本數(shù)據(jù)落在區(qū)間內(nèi)的頻數(shù)為()A.48 B.60 C.64 D.7210.已知函數(shù),在中,內(nèi)角的對邊分別是,內(nèi)角滿足,若,則的周長的取值范圍為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.一個圓柱和一個圓錐的底面直徑和它們的高都與某一個球的直徑相等,這時圓柱、圓錐、球的體積之比為.12.在半徑為的球中有一內(nèi)接正四棱柱(底面是正方形,側(cè)棱垂直底面),當(dāng)該正四棱柱的側(cè)面積最大時,球的表面積與該正四棱柱的側(cè)面積之差是__________.13.在四面體中,平面ABC,,若四面體ABCD的外接球的表面積為,則四面體ABCD的體積為_______.14.已知兩點A(2,1)、B(1,1+)滿足=(sinα,cosβ),α,β∈(﹣,),則α+β=_______________15.正項等比數(shù)列中,為數(shù)列的前n項和,,則的取值范圍是____________.16.用線性回歸某型求得甲、乙、丙3組不同的數(shù)據(jù)的線性關(guān)系數(shù)分別為0.81,-0.98,0.63,其中_________(填甲、乙、丙中的一個)組數(shù)據(jù)的線性關(guān)系性最強。三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,是正方形,是正方形的中心,底面是的中點.(1)求證:平面;(2)若,求三棱錐的體積.18.已知向量=(sinx,cosx),=(cosx,cosx),=(2,1).(1)若∥,求sinxcosx的值;(2)若0<x≤,求函數(shù)f(x)=·的值域.19.在某市高三教學(xué)質(zhì)量檢測中,全市共有名學(xué)生參加了本次考試,其中示范性高中參加考試學(xué)生人數(shù)為人,非示范性高中參加考試學(xué)生人數(shù)為人.現(xiàn)從所有參加考試的學(xué)生中隨機(jī)抽取人,作檢測成績數(shù)據(jù)分析.(1)設(shè)計合理的抽樣方案(說明抽樣方法和樣本構(gòu)成即可);(2)依據(jù)人的數(shù)學(xué)成績繪制了如圖所示的頻率分布直方圖,據(jù)此估計本次檢測全市學(xué)生數(shù)學(xué)成績的平均分;20.某種植園在芒果臨近成熟時,隨機(jī)從一些芒果樹上摘下100個芒果,其質(zhì)量分別在,,,,,(單位:克)中,經(jīng)統(tǒng)計得頻率分布直方圖如圖所示.(1)經(jīng)計算估計這組數(shù)據(jù)的中位數(shù);(2)現(xiàn)按分層抽樣從質(zhì)量為,的芒果中隨機(jī)抽取6個,再從這6個中隨機(jī)抽取3個,求這3個芒果中恰有1個在內(nèi)的概率.(3)某經(jīng)銷商來收購芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計總體,該種植園中還未摘下的芒果大約還有10000個,經(jīng)銷商提出如下兩種收購方案:A:所有芒果以10元/千克收購;B:對質(zhì)量低于250克的芒果以2元/個收購,高于或等于250克的以3元/個收購,通過計算確定種植園選擇哪種方案獲利更多?21.已知數(shù)列為遞增的等差數(shù)列,,且成等比數(shù)列.?dāng)?shù)列的前項和為,且滿足.(1)求,的通項公式;(2)令,求的前項和.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
對任意的、,有仍是該數(shù)列的某一項,可得出是該數(shù)列中的項,由于,可得,即,以此類推即可判斷出結(jié)論.【詳解】對任意、,有仍是該數(shù)列的某一項,,當(dāng)時,則,必有,即,而或.若,則,而、、,舍去;若,此時,,同理可得.可得數(shù)列為:、、、、.綜上可得:(1);(2);(3)數(shù)列是等差數(shù)列;(4)集合,該集合中共有個元素.因此,(1)(2)(3)(4)都正確.故選:D.【點睛】本題考查有關(guān)數(shù)列命題真假的判斷,涉及數(shù)列的新定義,考查推理能力與分類討論思想的應(yīng)用,屬于中等題.2、A【解析】
根據(jù)題意可知的值,從而可求的值.【詳解】因為,,則.故選A.【點睛】本題考查任意角的三角函數(shù)的基本計算,難度較易.若終邊與單位圓交于點,則.3、D【解析】
利用特殊值證得①②不一定能推出,利用平方差公式證得③能推出.【詳解】對于①,若,而,故①不一定能推出;對于②,若,而,故②不一定能推出;對于③,由于,所以,故,也即.故③一定能推出.故選:D.【點睛】本小題主要考查不等式的性質(zhì),考查實數(shù)大小比較,屬于基礎(chǔ)題.4、D【解析】
容易看出,四邊形是平行四邊形,從而得出.【詳解】根據(jù)圖形看出,四邊形是平行四邊形故選:【點睛】本題考查相等向量概念辨析,屬于基礎(chǔ)題.5、B【解析】
兩直線平行,斜率相等;按,和三類求解.【詳解】當(dāng)即時,兩直線為,,兩直線不平行,不符合題意;當(dāng)時,兩直線為,兩直線不平行,不符合題意;當(dāng)即時,直線的斜率為,直線的斜率為,因為兩直線平行,所以,解得或,故選B.【點睛】本題考查直線平行的斜率關(guān)系,注意斜率不存在和斜率為零的情況.6、B【解析】
由回歸方程經(jīng)過樣本中心點,求得樣本平均數(shù)后代入回歸方程即可求得第一組的數(shù)值.【詳解】設(shè)第一組數(shù)據(jù)為,則,,根據(jù)回歸方程經(jīng)過樣本中心點,代入回歸方程,可得,解得,故選:B.【點睛】本題考查了回歸方程的性質(zhì)及簡單應(yīng)用,屬于基礎(chǔ)題.7、B【解析】
由已知利用余弦定理可得,解方程可得的值.【詳解】在三角形中,由余弦定理得:,化簡可得:,解得或(舍).故選:B.【點睛】本題主要考查了余弦定理在解三角形中的應(yīng)用,考查了方程思想,屬于基礎(chǔ)題.8、C【解析】
由,得,則,利用基本不等式,即可求解.【詳解】由題意,因為,則,所以,當(dāng)且僅當(dāng)時,即時取等號,所以的最小值為5,故選C.【點睛】本題主要考查了基本不等式的應(yīng)用,其中解答中熟記基本不等式的使用條件,合理構(gòu)造是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.9、B【解析】
由,求出,計算出數(shù)據(jù)落在區(qū)間內(nèi)的頻率,即可求解.【詳解】由,解得,所以數(shù)據(jù)落在區(qū)間內(nèi)的頻率為,所以數(shù)據(jù)落在區(qū)間內(nèi)的頻數(shù),故選B.【點睛】本題主要考查了頻率分布直方圖,頻率、頻數(shù),屬于中檔題.10、B【解析】
首先根據(jù)降冪公式以及輔助角公式化簡,把帶入利用余弦定理以及基本不等式即可.【詳解】由題意得,為三角形內(nèi)角所以,所以,因為,所以,,當(dāng)且僅當(dāng)時取等號,因為,所以,所以選擇B【點睛】本題主要考查了三角函數(shù)的化簡,以及余弦定理和基本不等式.在化簡的過程中常用到的公式有輔助角、二倍角、兩角和與差的正弦、余弦等.屬于中等題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
設(shè)球的半徑為r,則,,,所以,故答案為.考點:圓柱,圓錐,球的體積公式.點評:圓柱,圓錐,球的體積公式分別為.12、【解析】
根據(jù)正四棱柱外接球半徑的求解方法可得到正四棱柱底面邊長和高的關(guān)系,利用基本不等式得到,得到側(cè)面積最大值為;根據(jù)球的表面積公式求得球的表面積,作差得到結(jié)果.【詳解】設(shè)球內(nèi)接正四棱柱的底面邊長為,高為則球的半徑:正四棱柱的側(cè)面積:球的表面積:當(dāng)正四棱柱的側(cè)面積最大時,球的表面積與該正四棱柱的側(cè)面積之差為:本題正確結(jié)果:【點睛】本題考查多面體的外接球的相關(guān)問題的求解,關(guān)鍵是能夠根據(jù)外接球半徑構(gòu)造出關(guān)于正棱柱底面邊長和高的關(guān)系式,利用基本不等式求得最值;其中還涉及到球的表面積公式的應(yīng)用.13、【解析】
設(shè),再根據(jù)外接球的直徑與和底面外接圓的一條直徑構(gòu)成直角三角形求解進(jìn)而求得體積即可.【詳解】設(shè),底面外接圓直徑為.易得底面是邊長為3的等邊三角形.則由正弦定理得.又外接球的直徑與和底面外接圓的一條直徑構(gòu)成直角三角形有.又外接球的表面積為,即.解得.故四面體體積為.故答案為:【點睛】本題主要考查了側(cè)棱垂直于底面的四面體的外接球問題.需要根據(jù)題意建立底面三角形外接圓的直徑和三棱錐的高與外接球直徑的關(guān)系再求解.屬于中檔題.14、或0【解析】
運用向量的加減運算和特殊角的三角函數(shù)值,可得所求和.【詳解】兩點A(2,1)、B(1,1)滿足(sinα,cosβ),可得(﹣1,)=(,)=(sinα,cosβ),即為sinα,cosβ,α,β∈(),可得α,β=±,則α+β=0或.故答案為0或.【點睛】本題考查向量的加減運算和三角方程的解法,考查運能力,屬于基礎(chǔ)題.15、【解析】
利用結(jié)合基本不等式求得的取值范圍【詳解】由題意知,,且,所以,當(dāng)且僅當(dāng)?shù)忍柍闪?,所?故答案為:【點睛】本題考查等比數(shù)列的前n項和及性質(zhì),利用性質(zhì)結(jié)合基本不等式求最值是關(guān)鍵16、乙【解析】由當(dāng)數(shù)據(jù)的相關(guān)系數(shù)的絕對值越趨向于,則相關(guān)性越強可知,因為甲、乙、丙組不同的數(shù)據(jù)的線性相關(guān)系數(shù)分別為,所以乙線性相關(guān)系數(shù)的絕對值越接近,所以乙組數(shù)據(jù)的相關(guān)性越強.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】
(1)由平面得出,由底面為正方形得出,再利用直線與平面垂直的判定定理可證明平面;(2)由勾股定理計算出,由點為線段的中點得知點到平面的距離等于,并計算出的面積,最后利用錐體的體積公式可計算出三棱錐的體積.【詳解】(1)平面,平面,,又為正方形,,又平面,平面,,平面;(2)由題意知:,又,,,點到面的距離為,.【點睛】本題考查直線與平面垂直的判定,考查三棱錐體積的計算,在計算三棱錐的體積時,充分利用題中的線面垂直關(guān)系和平面與平面垂直的關(guān)系,尋找合適的底面和高來進(jìn)行計算,考查計算能力與推理能力,屬于中等題.18、(1);(2)【解析】
(1)由向量共線得tanx=2,再由同角三角函數(shù)基本關(guān)系得sinxcosx=,即可求解;(2)整理f(x)=·=sin(2x+)+,由三角函數(shù)性質(zhì)即可求解最值【詳解】(1)∵∥,∴sinx=2cosx,tanx=2.∴sinxcosx===(2)f(x)=·=sinxcosx+cos2x=sin2x+(1+cos2x)=sin(2x+)+∵0<x≤,∴<2x+≤.∴sin(2x+)≤1∴1≤f(x)≤.所以f(x)的值域為:【點睛】本題考查三角函數(shù)恒等變換,同角三角函數(shù)基本關(guān)系式,三角函數(shù)性質(zhì),熟記公式,準(zhǔn)確計算是關(guān)鍵,是中檔題19、(1)見解析;(2)92.4【解析】
(1)根據(jù)總體的差異性選擇分層抽樣,再結(jié)合抽樣比計算出非示范性高中和示范性高中所抽取的人數(shù);(2)將每個矩形底邊的中點值乘以相應(yīng)矩形的面積所得結(jié)果,再全部相加可得出本次測驗全市學(xué)生數(shù)學(xué)成績的平均分.【詳解】(1)由于總體有明顯差異的兩部分構(gòu)成,故采用分層抽樣,由題意,從示范性高中抽取人,從非師范性高中抽取人;(2)由頻率分布直方圖估算樣本平均分為推測估計本次檢測全市學(xué)生數(shù)學(xué)平均分為【點睛】本題考查分層抽樣以及計算頻率分布直方圖中的平均數(shù),著重考查學(xué)生對幾種抽樣方法的理解,以及頻率分布直方圖中幾個樣本數(shù)字的計算方法,屬于基礎(chǔ)題.20、(1)中位數(shù)為268.75;(2);(3)選B方案【解析】
(1)根據(jù)中位數(shù)左右兩邊的頻率均為0.5求解即可.(2)利用枚舉法求出所以可能的情況,再利用古典概型方法求解概率即可.(3)分別計算兩種方案的獲利再比較大小即可.【詳解】(1)由頻率分布直方圖可得,前3組的頻率和為,前4組的頻率和為,所以中位數(shù)在內(nèi),設(shè)中位數(shù)為,則有,解得.故中位數(shù)為268.75.(2)設(shè)質(zhì)量在內(nèi)的4個芒果分別為,,,,質(zhì)量在內(nèi)的2個芒果分別為,.從這6個芒果中選出3個的情況共有,,,,,,,,,,,,,,,,,,,,共計20種,其中恰有一個在內(nèi)的情況有,,,,,,,,,,,,共計12種,因此概率.(3)方案A:元.方案B:由題意得低于250克:元;高于或等于250克元.故總計元,由于,故B方案獲利更多,應(yīng)選B方案.【點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版旅游服務(wù)貨款擔(dān)保合同范本3篇
- 2025年食堂食品安全監(jiān)督服務(wù)合同3篇
- 2025版二零二五苗木種植與城市綠化工程合作合同3篇
- 2025年高科技產(chǎn)品外貿(mào)經(jīng)銷代理合同范本3篇
- 2025年食堂蔬菜定制化種植合作合同3篇
- 云母制品在醫(yī)療器械中的應(yīng)用探索考核試卷
- 二零二五年度木門安裝與室內(nèi)智能家居系統(tǒng)集成合同4篇
- 2025版學(xué)校宿管員招聘、培訓(xùn)與薪酬合同3篇
- 2025版國務(wù)院辦公廳事業(yè)單位教師聘用合同細(xì)則3篇
- 2025年倉庫貨物存儲及保管合同
- GB/T 45120-2024道路車輛48 V供電電壓電氣要求及試驗
- 春節(jié)文化常識單選題100道及答案
- 12123交管學(xué)法減分考試題及答案
- 24年追覓在線測評28題及答案
- 魚菜共生課件
- 《陸上風(fēng)電場工程概算定額》NBT 31010-2019
- 初中物理八年級下冊《動能和勢能》教學(xué)課件
- 高考滿分作文常見結(jié)構(gòu)
- 心肌梗死診療指南
- 原油脫硫技術(shù)
- GB/T 2518-2019連續(xù)熱鍍鋅和鋅合金鍍層鋼板及鋼帶
評論
0/150
提交評論