浙江省杭州市西湖區(qū)杭州學軍中學2025屆高一下數(shù)學期末復習檢測模擬試題含解析_第1頁
浙江省杭州市西湖區(qū)杭州學軍中學2025屆高一下數(shù)學期末復習檢測模擬試題含解析_第2頁
浙江省杭州市西湖區(qū)杭州學軍中學2025屆高一下數(shù)學期末復習檢測模擬試題含解析_第3頁
浙江省杭州市西湖區(qū)杭州學軍中學2025屆高一下數(shù)學期末復習檢測模擬試題含解析_第4頁
浙江省杭州市西湖區(qū)杭州學軍中學2025屆高一下數(shù)學期末復習檢測模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

浙江省杭州市西湖區(qū)杭州學軍中學2025屆高一下數(shù)學期末復習檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設有直線m、n和平面、.下列四個命題中,正確的是()A.若m∥,n∥,則m∥nB.若m,n,m∥,n∥,則∥C.若,m,則mD.若,m,m,則m∥2.已知直線的方程為,,則直線的傾斜角范圍()A. B.C. D.3.已知基本單位向量,,則的值為()A.1 B.5 C.7 D.254.如果成等差數(shù)列,成等比數(shù)列,那么等于()A. B. C. D.5.直線的傾斜角為A. B. C. D.6.已知,則,,的大小順序為()A. B. C. D.7.已知在中,內角的對邊分別為,若,則等于()A. B. C. D.8.如圖是一名籃球運動員在最近6場比賽中所得分數(shù)的莖葉圖,則下列關于該運動員所得分數(shù)的說法錯誤的是()A.中位數(shù)為14 B.眾數(shù)為13 C.平均數(shù)為15 D.方差為199.預測人口的變化趨勢有多種方法,“直接推算法”使用的公式是(),為預測人口數(shù),為初期人口數(shù),為預測期內年增長率,為預測期間隔年數(shù).如果在某一時期有,那么在這期間人口數(shù)A.呈下降趨勢 B.呈上升趨勢 C.擺動變化 D.不變10.若直線kx+(1-k)y-3=0和直線(k-1)x+(2k+3)y-2=0互相垂直,則k=()A.-3或-1 B.3或1 C.-3或1 D.-1或3二、填空題:本大題共6小題,每小題5分,共30分。11.在△ABC中,若a2=b2+bc+c2,則A=________.12.設數(shù)列的前項和為滿足:,則_________.13.已知角的終邊經過點,則的值為__________.14.如圖是一個算法的流程圖,則輸出的的值是________.15.已知等差數(shù)列滿足,則__________.16.求的值為________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知點.(1)求中邊上的高所在直線的方程;(2)求過三點的圓的方程.18.中,角所對的邊分別為,已知.(1)求角的大小;(2)若,求面積的最大值.19.假設關于某設備的使用年限x和支出的維修費y(萬元)有如下表的統(tǒng)計資料(1)畫出數(shù)據(jù)的散點圖,并判斷y與x是否呈線性相關關系(2)若y與x呈線性相關關系,求線性回歸方程的回歸系數(shù),(3)估計使用年限為10年時,維修費用是多少?參考公式及相關數(shù)據(jù):20.某校從高一年級的一次月考成績中隨機抽取了50名學生的成績(滿分100分,且抽取的學生成績都在內),按成績分為,,,,五組,得到如圖所示的頻率分布直方圖.(1)用分層抽樣的方法從月考成績在內的學生中抽取6人,求分別抽取月考成績在和內的學生多少人;(2)在(1)的前提下,從這6名學生中隨機抽取2名學生進行調查,求月考成績在內至少有1名學生被抽到的概率.21.已知函數(shù)的值域為A,.(1)當?shù)臑榕己瘮?shù)時,求的值;(2)當時,在A上是單調遞增函數(shù),求的取值范圍;(3)當時,(其中),若,且函數(shù)的圖象關于點對稱,在處取得最小值,試探討應該滿足的條件.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

當兩條直線同時與一個平面平行時,兩條直線之間的關系不能確定,故A不正確,B選項再加上兩條直線相交的條件,可以判斷面與面平行,故B不正確,C選項再加上m垂直于兩個平面的交線,得到線面垂直,故C不正確,D選項中由α⊥β,m⊥β,m,可得m∥α,故是正確命題,故選D2、B【解析】

利用直線斜率與傾斜角的關系即可求解.【詳解】由直線的方程為,所以,即直線的斜率,由.所以,又直線的傾斜角的取值范圍為,由正切函數(shù)的性質可得:直線的傾斜角為.故選:B【點睛】本題考查了直線的斜率與傾斜角之間的關系,同時考查了正弦函數(shù)的值域以及正切函數(shù)的性質,屬于基礎題.3、B【解析】

計算出向量的坐標,再利用向量的求模公式計算出的值.【詳解】由題意可得,因此,,故選B.【點睛】本題考查向量模的計算,解題的關鍵就是求出向量的坐標,并利用坐標求出向量的模,考查運算求解能力,屬于基礎題.4、D【解析】

因為成等差數(shù)列,所以,因為成等比數(shù)列,所以,因此.故選D5、D【解析】

求得直線的斜率,由此求得直線的傾斜角.【詳解】依題意,直線的斜率為,對應的傾斜角為,故選D.【點睛】本小題主要考查由直線一般式求斜率和傾斜角,考查特殊角的三角函數(shù)值,屬于基礎題.6、B【解析】

由三角函數(shù)的輔助角公式、余弦函數(shù)的二倍角公式,正切函數(shù)的和角公式求得.【詳解】故選B.【點睛】本題考查三角函數(shù)的輔助角公式、余弦函數(shù)的二倍角公式,正切函數(shù)的和角公式的三角恒等變換,屬于基礎題.7、A【解析】

由題意變形,運用余弦定理,可得cosB,再由同角的平方關系,可得所求值.【詳解】2b2﹣2a2=ac+2c2,可得a2+c2﹣b2ac,則cosB,可得B<π,即有sinB.故選A.【點睛】本題考查余弦定理的運用,考查同角的平方關系,以及運算能力,屬于中檔題.8、D【解析】從題設中所提供的莖葉圖可知六個數(shù)分別是,所以其中位數(shù)是,眾數(shù)是,平均數(shù),方差是,應選答案D.9、A【解析】

可以通過與之間的大小關系進行判斷.【詳解】當時,,所以,呈下降趨勢.【點睛】判斷變化率可以通過比較初始值與變化之后的數(shù)值之間的大小來判斷.10、C【解析】

直接利用兩直線垂直的充要條件列方程求解即可.【詳解】因為直線kx+(1-k)y-3=0和直線(k-1)x+(2k+3)y-2=0互相垂直,所以k(k-1)+(1-k)(2k+3)=0,解方程可得k=1或k=-3,故選C.【點睛】本題主要考查直線與直線垂直的充要條件,屬于基礎題.對直線位置關系的考查是熱點命題方向之一,這類問題以簡單題為主,主要考查兩直線垂直與兩直線平行兩種特殊關系:在斜率存在的前提下,(1)l1||l2?k1二、填空題:本大題共6小題,每小題5分,共30分。11、120°【解析】∵a2=b2+bc+c2,∴b2+c2-a2=-bc,∴cosA===-,又∵A為△ABC的內角,∴A=120°故答案為:120°12、【解析】

利用,求得關于的遞推關系式,利用配湊法證得是等比數(shù)列,由此求得數(shù)列的通項公式,進而求得的表達式,從而求得的值.【詳解】當時,.由于,而,故,故答案為:.【點睛】本小題主要考查配湊法求數(shù)列的通項公式,考查化歸與轉化的數(shù)學思想方法,屬于中檔題.13、【解析】按三角函數(shù)的定義,有.14、【解析】由程序框圖,得運行過程如下:;,結束循環(huán),即輸出的的值是7.15、【解析】

由等差數(shù)列的性質計算.【詳解】∵是等差數(shù)列,∴,∴.故答案為:1.【點睛】本題考查等差數(shù)列的性質,屬于基礎題.等差數(shù)列的性質如下:在等差數(shù)列中,,則.16、44.5【解析】

通過誘導公式,得出,依此類推,得出原式的值.【詳解】,,同理,,故答案為44.5.【點睛】本題主要考查了三角函數(shù)中的誘導公式的運用,得出是解題的關鍵,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)邊上的高所在直線方程斜率與邊所在直線的方程斜率之積為-1,可求出高所在直線的斜率,代入即可求出高所在直線的方程。(2)設圓的一般方程為,代入即可求得圓的方程。【詳解】(1)因為所在直線的斜率為,所以邊上的高所在直線的斜率為所以邊上的高所在直線的方程為,即(2)設所求圓的方程為因為在所求的圓上,故有所以所求圓的方程為【點睛】(1)求直線方程一般通過直線點斜式方程求解,即知道點和斜率。(2)圓的一般方程為,三個未知數(shù)三個點代入即可。18、(1);(2).【解析】

(1)由正弦定理化邊為角,再由同角間的三角函數(shù)關系化簡可求得;(2)利用余弦定理得出的等式,由基本不等式求得的最大值,可得面積最大值.【詳解】(1)∵,∴,又,∴,即,∴;(2)由(1),∴,當且僅當時等號成立.∴,,最大值為.【點睛】本題考查正弦定理和余弦定理,考查同角間的三角函數(shù)關系,考查基本不等式求最值.本題主要是考查的公式較多,掌握所有公式才能正確解題.本題屬于中檔題.19、(1)見解析;(2),;(3)12.38萬元【解析】

(1)在坐標系中畫出5個離散的點;(2)利用最小二乘法求出,再利用回歸直線過散點圖的中心,求出;(3)將代入(2)中的回歸直線方程,求得.【詳解】(1)散點圖如下:所以從散點圖年,它們具有線性相關關系.(2),,于是有,.(3)回歸直線方程是當時,(萬元),即估計使用年限為10年時,維修費用是萬元.【點睛】本題考查散點圖的作法、最小二乘法求回歸直線方程及利用回歸直線預報當時,的值,考查數(shù)據(jù)處理能力.20、(1)有4人,有2人;(2)【解析】

(1)由頻率分布直方圖,求出成績在和內的頻率的比值,再按比例抽取即可;(2)由古典概型的概率的求法,先求出從這6名學生中隨機抽取2名學生的所有不同取法,再求出被抽到的學生至少有1名月考成績在內的不同取法,再求解即可.【詳解】解:(1)因為,所以,則月考成績在內的學生有人;月考成績在內的學生有人,則成績在和內的頻率的比值為,故用分層抽樣的方法從月考成績在內的學生中抽取4人,從月考成績在內的學生中抽取2人.(2)由(1)可知,被抽取的6人中有4人的月考成績在內,分別記為,,,;有2人的月考成績在內,分別記為,.則從這6名學生中隨機抽取2名學生的情況為,,,,,,,,,,,,,,,共15種;被抽到的學生至少有1名月考成績在內的情況為,,,,,,,,,共9種.故月考成績內至少有1名學生被抽到的概率為.【點睛】本題考查了分層抽樣,重點考查了古典概型概率的求法,屬中檔題.21、(1);(2);(3).【解析】

(1)由函數(shù)為偶函數(shù),可得,故,由此可得的值.(2)化

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論