版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
北京市東城區(qū)示范校新高考仿真模擬數(shù)學(xué)試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.高斯是德國(guó)著名的數(shù)學(xué)家,近代數(shù)學(xué)奠基者之一,享有“數(shù)學(xué)王子”的稱號(hào),用其名字命名的“高斯函數(shù)”為:設(shè),用表示不超過(guò)的最大整數(shù),則稱為高斯函數(shù),例如:,,已知函數(shù)(),則函數(shù)的值域?yàn)椋ǎ〢. B. C. D.2.已知函數(shù),對(duì)任意的,,當(dāng)時(shí),,則下列判斷正確的是()A. B.函數(shù)在上遞增C.函數(shù)的一條對(duì)稱軸是 D.函數(shù)的一個(gè)對(duì)稱中心是3.已知單位向量,的夾角為,若向量,,且,則()A.2 B.2 C.4 D.64.當(dāng)時(shí),函數(shù)的圖象大致是()A. B.C. D.5.已知拋物線的焦點(diǎn)為,準(zhǔn)線為,是上一點(diǎn),是直線與拋物線的一個(gè)交點(diǎn),若,則()A. B.3 C. D.26.等腰直角三角形的斜邊AB為正四面體側(cè)棱,直角邊AE繞斜邊AB旋轉(zhuǎn),則在旋轉(zhuǎn)的過(guò)程中,有下列說(shuō)法:(1)四面體EBCD的體積有最大值和最小值;(2)存在某個(gè)位置,使得;(3)設(shè)二面角的平面角為,則;(4)AE的中點(diǎn)M與AB的中點(diǎn)N連線交平面BCD于點(diǎn)P,則點(diǎn)P的軌跡為橢圓.其中,正確說(shuō)法的個(gè)數(shù)是()A.1 B.2 C.3 D.47.將函數(shù)圖象向右平移個(gè)單位長(zhǎng)度后,得到函數(shù)的圖象關(guān)于直線對(duì)稱,則函數(shù)在上的值域是()A. B. C. D.8.下列選項(xiàng)中,說(shuō)法正確的是()A.“”的否定是“”B.若向量滿足,則與的夾角為鈍角C.若,則D.“”是“”的必要條件9.若復(fù)數(shù)z滿足,則()A. B. C. D.10.如圖,正三棱柱各條棱的長(zhǎng)度均相等,為的中點(diǎn),分別是線段和線段的動(dòng)點(diǎn)(含端點(diǎn)),且滿足,當(dāng)運(yùn)動(dòng)時(shí),下列結(jié)論中不正確的是A.在內(nèi)總存在與平面平行的線段B.平面平面C.三棱錐的體積為定值D.可能為直角三角形11.給甲、乙、丙、丁四人安排泥工、木工、油漆三項(xiàng)工作,每項(xiàng)工作至少一人,每人做且僅做一項(xiàng)工作,甲不能安排木工工作,則不同的安排方法共有()A.12種 B.18種 C.24種 D.64種12.已知函數(shù),則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,是互相垂直的單位向量,若與λ的夾角為60°,則實(shí)數(shù)λ的值是__.14.在中,為定長(zhǎng),,若的面積的最大值為,則邊的長(zhǎng)為_(kāi)___________.15.如圖,在梯形中,∥,分別是的中點(diǎn),若,則的值為_(kāi)__________.16.(5分)已知橢圓方程為,過(guò)其下焦點(diǎn)作斜率存在的直線與橢圓交于兩點(diǎn),為坐標(biāo)原點(diǎn),則面積的取值范圍是____________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù),函數(shù),其中,是的一個(gè)極值點(diǎn),且.(1)討論的單調(diào)性(2)求實(shí)數(shù)和a的值(3)證明18.(12分)如圖,平面四邊形為直角梯形,,,,將繞著翻折到.(1)為上一點(diǎn),且,當(dāng)平面時(shí),求實(shí)數(shù)的值;(2)當(dāng)平面與平面所成的銳二面角大小為時(shí),求與平面所成角的正弦.19.(12分)2019年6月,國(guó)內(nèi)的運(yùn)營(yíng)牌照開(kāi)始發(fā)放.從到,我們國(guó)家的移動(dòng)通信業(yè)務(wù)用了不到20年的時(shí)間,完成了技術(shù)上的飛躍,躋身世界先進(jìn)水平.為了解高校學(xué)生對(duì)的消費(fèi)意愿,2019年8月,從某地在校大學(xué)生中隨機(jī)抽取了1000人進(jìn)行調(diào)查,樣本中各類用戶分布情況如下:用戶分類預(yù)計(jì)升級(jí)到的時(shí)段人數(shù)早期體驗(yàn)用戶2019年8月至2019年12月270人中期跟隨用戶2020年1月至2021年12月530人后期用戶2022年1月及以后200人我們將大學(xué)生升級(jí)時(shí)間的早晚與大學(xué)生愿意為套餐支付更多的費(fèi)用作比較,可得出下圖的關(guān)系(例如早期體驗(yàn)用戶中愿意為套餐多支付5元的人數(shù)占所有早期體驗(yàn)用戶的).(1)從該地高校大學(xué)生中隨機(jī)抽取1人,估計(jì)該學(xué)生愿意在2021年或2021年之前升級(jí)到的概率;(2)從樣本的早期體驗(yàn)用戶和中期跟隨用戶中各隨機(jī)抽取1人,以表示這2人中愿意為升級(jí)多支付10元或10元以上的人數(shù),求的分布列和數(shù)學(xué)期望;(3)2019年底,從這1000人的樣本中隨機(jī)抽取3人,這三位學(xué)生都已簽約套餐,能否認(rèn)為樣本中早期體驗(yàn)用戶的人數(shù)有變化?說(shuō)明理由.20.(12分)已知不等式對(duì)于任意的恒成立.(1)求實(shí)數(shù)m的取值范圍;(2)若m的最大值為M,且正實(shí)數(shù)a,b,c滿足.求證.21.(12分)已知拋物線E:y2=2px(p>0),焦點(diǎn)F到準(zhǔn)線的距離為3,拋物線E上的兩個(gè)動(dòng)點(diǎn)A(x1,y1)和B(x2,y2),其中x1≠x2且x1+x2=1.線段AB的垂直平分線與x軸交于點(diǎn)C.(1)求拋物線E的方程;(2)求△ABC面積的最大值.22.(10分)已知函數(shù).(1)當(dāng)時(shí),解不等式;(2)設(shè)不等式的解集為,若,求實(shí)數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
利用換元法化簡(jiǎn)解析式為二次函數(shù)的形式,根據(jù)二次函數(shù)的性質(zhì)求得的取值范圍,由此求得的值域.【詳解】因?yàn)椋ǎ?,所以,令(),則(),函數(shù)的對(duì)稱軸方程為,所以,,所以,所以的值域?yàn)?故選:B【點(diǎn)睛】本小題考查函數(shù)的定義域與值域等基礎(chǔ)知識(shí),考查學(xué)生分析問(wèn)題,解決問(wèn)題的能力,運(yùn)算求解能力,轉(zhuǎn)化與化歸思想,換元思想,分類討論和應(yīng)用意識(shí).2、D【解析】
利用輔助角公式將正弦函數(shù)化簡(jiǎn),然后通過(guò)題目已知條件求出函數(shù)的周期,從而得到,即可求出解析式,然后利用函數(shù)的性質(zhì)即可判斷.【詳解】,又,即,有且僅有滿足條件;又,則,,函數(shù),對(duì)于A,,故A錯(cuò)誤;對(duì)于B,由,解得,故B錯(cuò)誤;對(duì)于C,當(dāng)時(shí),,故C錯(cuò)誤;對(duì)于D,由,故D正確.故選:D【點(diǎn)睛】本題考查了簡(jiǎn)單三角恒等變換以及三角函數(shù)的性質(zhì),熟記性質(zhì)是解題的關(guān)鍵,屬于基礎(chǔ)題.3、C【解析】
根據(jù)列方程,由此求得的值,進(jìn)而求得.【詳解】由于,所以,即,解得.所以所以.故選:C【點(diǎn)睛】本小題主要考查向量垂直的表示,考查向量數(shù)量積的運(yùn)算,考查向量模的求法,屬于基礎(chǔ)題.4、B【解析】由,解得,即或,函數(shù)有兩個(gè)零點(diǎn),,不正確,設(shè),則,由,解得或,由,解得:,即是函數(shù)的一個(gè)極大值點(diǎn),不成立,排除,故選B.【方法點(diǎn)晴】本題通過(guò)對(duì)多個(gè)圖象的選擇考察函數(shù)的解析式、定義域、值域、單調(diào)性,導(dǎo)數(shù)的應(yīng)用以及數(shù)學(xué)化歸思想,屬于難題.這類題型也是近年高考常見(jiàn)的命題方向,該題型的特點(diǎn)是綜合性較強(qiáng)較強(qiáng)、考查知識(shí)點(diǎn)較多,但是并不是無(wú)路可循.解答這類題型可以從多方面入手,根據(jù)函數(shù)的定義域、值域、單調(diào)性、奇偶性、特殊點(diǎn)以及時(shí)函數(shù)圖象的變化趨勢(shì),利用排除法,將不合題意選項(xiàng)一一排除.5、D【解析】
根據(jù)拋物線的定義求得,由此求得的長(zhǎng).【詳解】過(guò)作,垂足為,設(shè)與軸的交點(diǎn)為.根據(jù)拋物線的定義可知.由于,所以,所以,所以,所以.故選:D【點(diǎn)睛】本小題主要考查拋物線的定義,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.6、C【解析】
解:對(duì)于(1),當(dāng)CD⊥平面ABE,且E在AB的右上方時(shí),E到平面BCD的距離最大,當(dāng)CD⊥平面ABE,且E在AB的左下方時(shí),E到平面BCD的距離最小,∴四面體E﹣BCD的體積有最大值和最小值,故(1)正確;對(duì)于(2),連接DE,若存在某個(gè)位置,使得AE⊥BD,又AE⊥BE,則AE⊥平面BDE,可得AE⊥DE,進(jìn)一步可得AE=DE,此時(shí)E﹣ABD為正三棱錐,故(2)正確;對(duì)于(3),取AB中點(diǎn)O,連接DO,EO,則∠DOE為二面角D﹣AB﹣E的平面角,為θ,直角邊AE繞斜邊AB旋轉(zhuǎn),則在旋轉(zhuǎn)的過(guò)程中,θ∈[0,π),∠DAE∈[,π),所以θ≥∠DAE不成立.(3)不正確;對(duì)于(4)AE的中點(diǎn)M與AB的中點(diǎn)N連線交平面BCD于點(diǎn)P,P到BC的距離為:dP﹣BC,因?yàn)椋?,所以點(diǎn)P的軌跡為橢圓.(4)正確.故選:C.點(diǎn)睛:該題考查的是有關(guān)多面體和旋轉(zhuǎn)體對(duì)應(yīng)的特征,以幾何體為載體,考查相關(guān)的空間關(guān)系,在解題的過(guò)程中,需要認(rèn)真分析,得到結(jié)果,注意對(duì)知識(shí)點(diǎn)的靈活運(yùn)用.7、D【解析】
由題意利用函數(shù)的圖象變換規(guī)律,三角函數(shù)的圖象的對(duì)稱性,余弦函數(shù)的值域,求得結(jié)果.【詳解】解:把函數(shù)圖象向右平移個(gè)單位長(zhǎng)度后,可得的圖象;再根據(jù)得到函數(shù)的圖象關(guān)于直線對(duì)稱,,,,函數(shù).在上,,,故,即的值域是,故選:D.【點(diǎn)睛】本題主要考查函數(shù)的圖象變換規(guī)律,三角函數(shù)的圖象的對(duì)稱性,余弦函數(shù)的值域,屬于中檔題.8、D【解析】
對(duì)于A根據(jù)命題的否定可得:“?x0∈R,x02-x0≤0”的否定是“?x∈R,x2-x>0”,即可判斷出;對(duì)于B若向量滿足,則與的夾角為鈍角或平角;對(duì)于C當(dāng)m=0時(shí),滿足am2≤bm2,但是a≤b不一定成立;對(duì)于D根據(jù)元素與集合的關(guān)系即可做出判斷.【詳解】選項(xiàng)A根據(jù)命題的否定可得:“?x0∈R,x02-x0≤0”的否定是“?x∈R,x2-x>0”,因此A不正確;選項(xiàng)B若向量滿足,則與的夾角為鈍角或平角,因此不正確.選項(xiàng)C當(dāng)m=0時(shí),滿足am2≤bm2,但是a≤b不一定成立,因此不正確;選項(xiàng)D若“”,則且,所以一定可以推出“”,因此“”是“”的必要條件,故正確.故選:D.【點(diǎn)睛】本題考查命題的真假判斷與應(yīng)用,涉及知識(shí)點(diǎn)有含有量詞的命題的否定、不等式性質(zhì)、向量夾角與性質(zhì)、集合性質(zhì)等,屬于簡(jiǎn)單題.9、D【解析】
先化簡(jiǎn)得再求得解.【詳解】所以.故選:D【點(diǎn)睛】本題主要考查復(fù)數(shù)的運(yùn)算和模的計(jì)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.10、D【解析】
A項(xiàng)用平行于平面ABC的平面與平面MDN相交,則交線與平面ABC平行;B項(xiàng)利用線面垂直的判定定理;C項(xiàng)三棱錐與三棱錐體積相等,三棱錐的底面積是定值,高也是定值,則體積是定值;D項(xiàng)用反證法說(shuō)明三角形DMN不可能是直角三角形.【詳解】A項(xiàng),用平行于平面ABC的平面截平面MND,則交線平行于平面ABC,故正確;B項(xiàng),如圖:當(dāng)M、N分別在BB1、CC1上運(yùn)動(dòng)時(shí),若滿足BM=CN,則線段MN必過(guò)正方形BCC1B1的中心O,由DO垂直于平面BCC1B1可得平面平面,故正確;C項(xiàng),當(dāng)M、N分別在BB1、CC1上運(yùn)動(dòng)時(shí),△A1DM的面積不變,N到平面A1DM的距離不變,所以棱錐N-A1DM的體積不變,即三棱錐A1-DMN的體積為定值,故正確;D項(xiàng),若△DMN為直角三角形,則必是以∠MDN為直角的直角三角形,但MN的最大值為BC1,而此時(shí)DM,DN的長(zhǎng)大于BB1,所以△DMN不可能為直角三角形,故錯(cuò)誤.故選D【點(diǎn)睛】本題考查了命題真假判斷、棱柱的結(jié)構(gòu)特征、空間想象力和思維能力,意在考查對(duì)線面、面面平行、垂直的判定和性質(zhì)的應(yīng)用,是中檔題.11、C【解析】
根據(jù)題意,分2步進(jìn)行分析:①,將4人分成3組,②,甲不能安排木工工作,甲所在的一組只能安排給泥工或油漆,將剩下的2組全排列,安排其他的2項(xiàng)工作,由分步計(jì)數(shù)原理計(jì)算可得答案.【詳解】解:根據(jù)題意,分2步進(jìn)行分析:①,將4人分成3組,有種分法;②,甲不能安排木工工作,甲所在的一組只能安排給泥工或油漆,有2種情況,將剩下的2組全排列,安排其他的2項(xiàng)工作,有種情況,此時(shí)有種情況,則有種不同的安排方法;故選:C.【點(diǎn)睛】本題考查排列、組合的應(yīng)用,涉及分步計(jì)數(shù)原理的應(yīng)用,屬于基礎(chǔ)題.12、A【解析】
根據(jù)分段函數(shù)解析式,先求得的值,再求得的值.【詳解】依題意,.故選:A【點(diǎn)睛】本小題主要考查根據(jù)分段函數(shù)解析式求函數(shù)值,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)平面向量的數(shù)量積運(yùn)算與單位向量的定義,列出方程解方程即可求出λ的值.【詳解】解:由題意,設(shè)(1,0),(0,1),則(,﹣1),λ(1,λ);又夾角為60°,∴()?(λ)λ=2cos60°,即λ,解得λ.【點(diǎn)睛】本題考查了單位向量和平面向量數(shù)量積的運(yùn)算問(wèn)題,是中檔題.14、【解析】
設(shè),以為原點(diǎn),為軸建系,則,,設(shè),,,利用求向量模的公式,可得,根據(jù)三角形面積公式進(jìn)一步求出的值即為所求.【詳解】解:設(shè),以為原點(diǎn),為軸建系,則,,設(shè),,則,即,由,可得.則.故答案為:.【點(diǎn)睛】本題考查向量模的計(jì)算,建系是關(guān)鍵,屬于難題.15、【解析】
建系,設(shè)設(shè),由可得,進(jìn)一步得到的坐標(biāo),再利用數(shù)量積的坐標(biāo)運(yùn)算即可得到答案.【詳解】以A為坐標(biāo)原點(diǎn),AD為x軸建立如圖所示的直角坐標(biāo)系,設(shè),則,所以,,由,得,即,又,所以,故,,所以.故答案為:2【點(diǎn)睛】本題考查利用坐標(biāo)法求向量的數(shù)量積,考查學(xué)生的運(yùn)算求解能力,是一道中檔題.16、【解析】
由題意,,則,得.由題意可設(shè)的方程為,,聯(lián)立方程組,消去得,恒成立,,,則,點(diǎn)到直線的距離為,則,又,則,當(dāng)且僅當(dāng)即時(shí)取等號(hào).故面積的取值范圍是.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)在區(qū)間單調(diào)遞增;(2);(3)證明見(jiàn)解析.【解析】
(1)求出,在定義域內(nèi),再次求導(dǎo),可得在區(qū)間上恒成立,從而可得結(jié)論;(2)由,可得,由可得,聯(lián)立解方程組可得結(jié)果;(3)由(1)知在區(qū)間單調(diào)遞增,可證明,取,可得,而,利用裂項(xiàng)相消法,結(jié)合放縮法可得結(jié)果.【詳解】(1)由已知可得函數(shù)的定義域?yàn)?,且,令,則有,由,可得,可知當(dāng)x變化時(shí),的變化情況如下表:1-0+極小值,即,可得在區(qū)間單調(diào)遞增;(2)由已知可得函數(shù)的定義域?yàn)?,且,由已知得,即,①由可得,,②?lián)立①②,消去a,可得,③令,則,由(1)知,,故,在區(qū)間單調(diào)遞增,注意到,所以方程③有唯一解,代入①,可得,;(3)證明:由(1)知在區(qū)間單調(diào)遞增,故當(dāng)時(shí),,,可得在區(qū)間單調(diào)遞增,因此,當(dāng)時(shí),,即,亦即,這時(shí),故可得,取,可得,而,故.【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性以及不等式的證明,屬于難題.不等式證明問(wèn)題是近年高考命題的熱點(diǎn),利用導(dǎo)數(shù)證明不等主要方法有兩個(gè),一是比較簡(jiǎn)單的不等式證明,不等式兩邊作差構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出函數(shù)的最值即可;二是較為綜合的不等式證明,要觀察不等式特點(diǎn),結(jié)合已解答的問(wèn)題把要證的不等式變形,并運(yùn)用已證結(jié)論先行放縮,然后再化簡(jiǎn)或者進(jìn)一步利用導(dǎo)數(shù)證明.18、(1);(2).【解析】
(1)連接交于點(diǎn),連接,利用線面平行的性質(zhì)定理可推導(dǎo)出,然后利用平行線分線段成比例定理可求得的值;(2)取中點(diǎn),連接、,過(guò)點(diǎn)作,則,作于,連接,推導(dǎo)出,,可得出為平面與平面所成的銳二面角,由此計(jì)算出、,并證明出平面,可得出直線與平面所成的角為,進(jìn)而可求得與平面所成角的正弦值.【詳解】(1)連接交于點(diǎn),連接,平面,平面,平面平面,,在梯形中,,則,,,,所以,;(2)取中點(diǎn),連接、,過(guò)點(diǎn)作,則,作于,連接.為的中點(diǎn),且,,且,所以,四邊形為平行四邊形,由于,,,,,,,為的中點(diǎn),所以,,,同理,,,,平面,,,,為面與面所成的銳二面角,,,,,則,,,平面,平面,,,,面,為與底面所成的角,,,.在中,.因此,與平面所成角的正弦值為.【點(diǎn)睛】本題考查利用線面平行的性質(zhì)求參數(shù),同時(shí)也考查了線面角的計(jì)算,涉及利用二面角求線段長(zhǎng)度,考查推理能力與計(jì)算能力,屬于中等題.19、(1)(2)詳見(jiàn)解析(3)事件雖然發(fā)生概率小,但是發(fā)生可能性為0.02,所以認(rèn)為早期體驗(yàn)用戶沒(méi)有發(fā)生變化,詳見(jiàn)解析【解析】
(1)由從高校大學(xué)生中隨機(jī)抽取1人,該學(xué)生在2021年或2021年之前升級(jí)到,結(jié)合古典摡型的概率計(jì)算公式,即可求解;(2)由題意的所有可能值為,利用相互獨(dú)立事件的概率計(jì)算公式,分別求得相應(yīng)的概率,得到隨機(jī)變量的分布列,利用期望的公式,即可求解.(3)設(shè)事件為“從這1000人的樣本中隨機(jī)抽取3人,這三位學(xué)生都已簽約套餐”,得到七概率為,即可得到結(jié)論.【詳解】(1)由題意可知,從高校大學(xué)生中隨機(jī)抽取1人,該學(xué)生在2021年或2021年之前升級(jí)到的概率估計(jì)為樣本中早期體驗(yàn)用戶和中期跟隨用戶的頻率,即.(2)由題意的所有可能值為,記事件為“從早期體驗(yàn)用戶中隨機(jī)抽取1人,該學(xué)生愿意為升級(jí)多支付10元或10元以上”,事件為“從中期跟隨用戶中隨機(jī)抽取1人,該學(xué)生愿意為升級(jí)多支付10元或10元以上”,由題意可知,事件,相互獨(dú)立,且,,所以,,,所以的分布列為0120.180.490.33故的數(shù)學(xué)期望.(3)設(shè)事件為“從這1000人的樣本中隨機(jī)抽取3人,這三位學(xué)生都已簽約套餐”,那么.回答一:事件雖然發(fā)生概率小,但是發(fā)生可能性為0.02,所以認(rèn)為早期體驗(yàn)用戶沒(méi)有發(fā)生變化.回答二:事件發(fā)生概率小,所以可以認(rèn)為早期體驗(yàn)用戶人數(shù)增加.【點(diǎn)睛】本題主要考查了離散型隨機(jī)變量的分布列,數(shù)學(xué)期望的求解及應(yīng)用,對(duì)于求離散型隨機(jī)變量概率分布列問(wèn)題首先要清楚離散型隨機(jī)變量的可能取值,計(jì)算得出概率,列出離散型隨機(jī)變量概率分布列,最后按照數(shù)學(xué)期望公式計(jì)算出數(shù)學(xué)期望,其中列出離散型隨機(jī)變量概率分布列及計(jì)算數(shù)學(xué)期望是理科高考數(shù)學(xué)必考問(wèn)題.20、(1)(2)證明見(jiàn)解析【解析】
(1)法一:,,得,則,由此可得答案;法二:由題意,令,易知是偶函數(shù),且時(shí)為增函數(shù),由此可得出答案;(2)由(1)知,,即,結(jié)合“1”的代換,利用基本不等式即可證明結(jié)論.【詳解】解:(1)法一:(當(dāng)且僅當(dāng)時(shí)取等號(hào)),又(當(dāng)且僅當(dāng)時(shí)取等號(hào)),所以(當(dāng)且僅當(dāng)時(shí)取等號(hào)),由題意得,則,解得,故的取值范圍是;法二:因?yàn)閷?duì)于任意恒有成立,即,令,易知是偶函數(shù),且時(shí)為增函數(shù),所以,即,則,解得,故的取值范圍是;(2)由(1)知,,即,∴,故不等式成立.【點(diǎn)睛】本題主要考查絕對(duì)值不等式的恒成立問(wèn)題,考查基本不等式的應(yīng)用,屬于中檔題.21、(1)y2=6x(2).【解析】
(1)根據(jù)拋物線定義,寫出焦點(diǎn)坐標(biāo)和準(zhǔn)線方程,列方程即可得解;(2
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 家禽飼養(yǎng)常見(jiàn)疾病診治指南考核試卷
- 城市軌道交通的安全評(píng)估與應(yīng)急響應(yīng)機(jī)制考核試卷
- 高效物流與供應(yīng)鏈管理的智能倉(cāng)儲(chǔ)設(shè)備升級(jí)方案
- 體育行業(yè)智能化體育賽事組織與管理方案
- 食品行業(yè)健康食品開(kāi)發(fā)方案
- 廣電設(shè)備用音頻信號(hào)混合器考核試卷
- 游戲推廣代理運(yùn)營(yíng)合同
- 智能窨井蓋課課程設(shè)計(jì)
- 幼兒園游戲闖關(guān)課程設(shè)計(jì)
- 2024年版子女撫養(yǎng)權(quán)合同模板版B版
- 學(xué)會(huì)正當(dāng)防衛(wèi)課件
- 溫室大棚改造施工方案及日光大棚設(shè)計(jì)方案
- 木質(zhì)吸音板施工工藝
- 文華財(cái)經(jīng)-半自動(dòng)程序化交易使用指南101212
- 全國(guó)優(yōu)質(zhì)課大賽一等獎(jiǎng)人教版高中地理必修一《土壤》精美賽課課件
- 2023北京市第一次高中學(xué)業(yè)水平合格性考試數(shù)學(xué)試卷真題(含答案詳解)
- 產(chǎn)品合格證標(biāo)簽出廠合格證模板
- GA/T 2007-2022法庭科學(xué)氣槍彈檢驗(yàn)技術(shù)規(guī)范
- 《孔乙己》改編劇本
- 化工自動(dòng)化控制儀表作業(yè)安全操作資格培訓(xùn)教材課件
- 繪畫心理治療專家講座
評(píng)論
0/150
提交評(píng)論