版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
山西省大同一中2025屆高一數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.袋中有個(gè)大小相同的小球,其中個(gè)白球,個(gè)紅球,個(gè)黑球,現(xiàn)在從中任意取一個(gè),則取出的球恰好是紅色或者黑色小球的概率為()A. B. C. D.2.若,則一定有()A. B. C. D.3.不等式的解集為()A. B. C. D.4.正方體中,異面直線與BC所成角的大小為()A. B. C. D.5.已知,則下列不等式成立的是()A. B. C. D.6.已知等比數(shù)列的前項(xiàng)和為,,,則()A.31 B.15 C.8 D.77.在區(qū)間上任取兩個(gè)實(shí)數(shù),則滿足的概率為()A. B. C. D.8.已知m,n表示兩條不同直線,表示平面,下列說法正確的是()A.若則 B.若,,則C.若,,則 D.若,,則9.如圖,在下列四個(gè)正方體中,,,,,,,為所在棱的中點(diǎn),則在這四個(gè)正方體中,陰影平面與所在平面平行的是()A. B.C. D.10.設(shè)l是直線,,是兩個(gè)不同的平面,下列命題正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則二、填空題:本大題共6小題,每小題5分,共30分。11.在平面直角坐標(biāo)系中,點(diǎn),,若直線上存在點(diǎn)使得,則實(shí)數(shù)的取值范圍是_____.12.函數(shù)的定義域是_____.13.如圖,四棱錐中,所有棱長均為2,是底面正方形中心,為中點(diǎn),則直線與直線所成角的余弦值為____________.14.已知,,,則的最小值為__________.15.若a、b、c正數(shù)依次成等差數(shù)列,則的最小值為_______.16.在Rt△ABC中,∠B=90°,BC=6,AB=8,點(diǎn)M為△ABC內(nèi)切圓的圓心,過點(diǎn)M作動直線l與線段AB,AC都相交,將△ABC沿動直線l翻折,使翻折后的點(diǎn)A在平面BCM上的射影P落在直線BC上,點(diǎn)A在直線l上的射影為Q,則的最小值為_____.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.眉山市位于四川西南,有“千載詩書城,人文第一州”的美譽(yù),這里是大文豪蘇軾、蘇洵、蘇轍的故鄉(xiāng),也是人們旅游的好地方.在今年的國慶黃金周,為了豐富游客的文化生活,每天在東坡故里三蘇祠舉行“三蘇文化”知識競賽.已知甲、乙兩隊(duì)參賽,每隊(duì)3人,每人回答一個(gè)問題,答對者為本隊(duì)贏得一分,答錯(cuò)得零分.假設(shè)甲隊(duì)中每人答對的概率均為,乙隊(duì)中3人答對的概率分別為,,,且各人回答正確與否相互之間沒有影響.(1)分別求甲隊(duì)總得分為0分;2分的概率;(2)求甲隊(duì)得2分乙隊(duì)得1分的概率.18.?dāng)?shù)列中,且滿足.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求;⑶設(shè),是否存在最大的整數(shù),使得對任意,均有成立?若存在,求出的值;若不存在,請說明理由.19.已知函數(shù),且,.(1)求,的值及的定義域;(2)若存在,使得成立,求實(shí)數(shù)的取值范圍.20.在中,分別是角的對邊,且.(1)求的大?。唬?)若,求的面積.21.如圖,在四棱錐中,平面,,,,點(diǎn)Q在棱AB上.(1)證明:平面.(2)若三棱錐的體積為,求點(diǎn)B到平面PDQ的距離.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】
利用古典概型的概率公式可計(jì)算出所求事件的概率.【詳解】從袋中個(gè)球中任取一個(gè)球,取出的球恰好是一個(gè)紅色或黑色小球的基本事件數(shù)為,因此,取出的球恰好是紅色或者黑色小球的概率為,故選D.【點(diǎn)睛】本題考查古典概型概率的計(jì)算,解題時(shí)要確定出全部基本事件數(shù)和所求事件所包含的基本事件數(shù),并利用古典概型的概率公式進(jìn)行計(jì)算,考查計(jì)算能力,屬于基礎(chǔ)題.2、C【解析】
由題,可得,且,即,整理后即可得到作出判斷【詳解】由題可得,則,因?yàn)?則,,則有,所以,即故選C【點(diǎn)睛】本題考查不等式的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題3、A【解析】
因式分解求解即可.【詳解】,解得.故選:A【點(diǎn)睛】本題主要考查了二次不等式的求解,屬于基礎(chǔ)題.4、D【解析】
利用異面直線與BC所成角的的定義,平移直線,即可得答案.【詳解】在正方體中,易得.異面直線與垂直,即所成的角為.故選:D.【點(diǎn)睛】本題考查異面直線所成角的定義,考查對基本概念的理解,屬于基礎(chǔ)題.5、D【解析】
依次判斷每個(gè)選項(xiàng)得出答案.【詳解】A.,取,不滿足,排除B.,取,不滿足,排除C.,當(dāng)時(shí),不滿足,排除D.,不等式兩邊同時(shí)除以不為0的正數(shù),成立故答案選D【點(diǎn)睛】本題考查了不等式的性質(zhì),意在考查學(xué)生的基礎(chǔ)知識.6、B【解析】
利用基本元的思想,將已知條件轉(zhuǎn)化為的形式,由此求得,進(jìn)而求得.【詳解】由于數(shù)列是等比數(shù)列,故,由于,故解得,所以.故選:B.【點(diǎn)睛】本小題主要考查等比數(shù)列通項(xiàng)公式的基本量的計(jì)算,考查等比數(shù)列前項(xiàng)和公式,屬于基礎(chǔ)題.7、B【解析】試題分析:因?yàn)?,在區(qū)間上任取兩個(gè)實(shí)數(shù),所以區(qū)域的面積為4,其中滿足的平面區(qū)域面積為,故滿足的概率為,選B.考點(diǎn):本題主要考查幾何概型概率計(jì)算.點(diǎn)評:簡單題,幾何概型概率的計(jì)算,關(guān)鍵是認(rèn)清兩個(gè)“幾何度量”.8、B【解析】試題分析:線面垂直,則有該直線和平面內(nèi)所有的直線都垂直,故B正確.考點(diǎn):空間點(diǎn)線面位置關(guān)系.9、A【解析】
根據(jù)線面平行判定定理以及作截面逐個(gè)分析判斷選擇.【詳解】A中,因?yàn)?所以可得平面,又,可得平面,從而平面平面B中,作截面可得平面平面(H為C1D1中點(diǎn)),如圖:C中,作截面可得平面平面(H為C1D1中點(diǎn)),如圖:D中,作截面可得為兩相交直線,因此平面與平面不平行,如圖:【點(diǎn)睛】本題考查線面平行判定定理以及截面,考查空間想象能力與基本判斷論證能力,屬中檔題.10、D【解析】
利用空間線線、線面、面面的位置關(guān)系對選項(xiàng)進(jìn)行逐一判斷,即可得到答案.【詳解】A.若,,則與可能平行,也可能相交,所以不正確.B.若,,則與可能的位置關(guān)系有相交、平行或,所以不正確.C.若,,則可能,所以不正確.D.若,,由線面平行的性質(zhì)過的平面與相交于,則,又.
所以,所以有,所以正確.故選:D【點(diǎn)睛】本題考查面面平行、垂直的判斷,線面平行和垂直的判斷,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、.【解析】
設(shè)由,求出點(diǎn)軌跡方程,可判斷其軌跡為圓,點(diǎn)又在直線,轉(zhuǎn)化為直線與圓有公共點(diǎn),只需圓心到直線的距離小于半徑,得到關(guān)于的不等式,求解,即可得出結(jié)論.【詳解】設(shè),,,,整理得,又點(diǎn)在直線,直線與圓共公共點(diǎn),圓心到直線的距離,即.故答案為:.【點(diǎn)睛】本題考查求曲線的軌跡方程,考查直線與圓的位置關(guān)系,屬于中檔題.12、.【解析】
由題意得到關(guān)于x的不等式,解不等式可得函數(shù)的定義域.【詳解】由已知得,即解得,故函數(shù)的定義域?yàn)?【點(diǎn)睛】求函數(shù)的定義域,其實(shí)質(zhì)就是以函數(shù)解析式有意義為準(zhǔn)則,列出不等式或不等式組,然后求出它們的解集即可.13、.【解析】
以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,利用向量法能求出直線與直線所成角的余弦值.【詳解】解:四棱錐中,所有棱長均為2,是底面正方形中心,為中點(diǎn),,平面,以為原點(diǎn),為軸,為軸,為軸,建立如圖所示的空間直角坐標(biāo)系,則,,,,,∴,,設(shè)直線與直線所成角為,則,直線與直線所成角的余弦值為.故答案為:.【點(diǎn)睛】本題主要考查異面直線所成角的余弦值的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,屬于中檔題.14、25【解析】
變形后,利用基本不等式可得.【詳解】當(dāng)且僅當(dāng),即,時(shí)取等號.故答案為:25【點(diǎn)睛】本題考查了利用基本不等式求最值,屬于基礎(chǔ)題.15、1【解析】
由正數(shù)a、b、c依次成等差數(shù)列,則,則,再結(jié)合基本不等式求最值即可.【詳解】解:由正數(shù)a、b、c依次成等差數(shù)列,則,則,當(dāng)且僅當(dāng),即時(shí)取等號,故答案為:1.【點(diǎn)睛】本題考查了等差中項(xiàng)的運(yùn)算,重點(diǎn)考查了基本不等式的應(yīng)用,屬基礎(chǔ)題.16、825【解析】
以AB,BC所在直線為坐標(biāo)軸建立平面直角坐標(biāo)系,設(shè)直線l的斜率為k,用k表示出|PQ|,|AQ|,利用基本不等式得出答案.【詳解】過點(diǎn)M作△ABC的三邊的垂線,設(shè)⊙M的半徑為r,則r2,以AB,BC所在直線為坐標(biāo)軸建立平面直角坐標(biāo)系,如圖所示,則M(2,2),A(0,8),因?yàn)锳在平面BCM的射影在直線BC上,所以直線l必存在斜率,過A作AQ⊥l,垂足為Q,交直線BC于P,設(shè)直線l的方程為:y=k(x﹣2)+2,則|AQ|,又直線AQ的方程為:yx+8,則P(8k,0),所以|AP|8,所以|PQ|=|AP|﹣|AQ|=8,所以,①當(dāng)k>﹣3時(shí),4(k+3)25≥825,當(dāng)且僅當(dāng)4(k+3),即k3時(shí)取等號;②當(dāng)k<﹣3時(shí),則4(k+3)23≥823,當(dāng)且僅當(dāng)﹣4(k+3),即k3時(shí)取等號.故答案為:825【點(diǎn)睛】本題考查了考查空間距離的計(jì)算,考查基本不等式的運(yùn)算,意在考查學(xué)生對這些知識的理解掌握水平.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)0分概率;2分概率;(2)【解析】
(1)記“甲隊(duì)總得分為0分”為事件,“甲隊(duì)總得分為2分”為事件,分析可知A事件三人都沒有答對,按相互獨(dú)立事件同時(shí)發(fā)生計(jì)算概率,B事件即甲隊(duì)三人中有1人答錯(cuò),其余兩人答對,由n次獨(dú)立事件恰有k次發(fā)生計(jì)算即可(2)記“乙隊(duì)得1分”為事件,“甲隊(duì)得2分乙隊(duì)得1分”為事件,分別有互斥事件概率加法公式及相互獨(dú)立事件乘法公式計(jì)算即可.【詳解】(1)記“甲隊(duì)總得分為0分”為事件,“甲隊(duì)總得分為2分”為事件,甲隊(duì)總得分為0分,即甲隊(duì)三人都回答錯(cuò)誤,其概率;甲隊(duì)總得分為2分,即甲隊(duì)三人中有1人答錯(cuò),其余兩人答對,其概率;(2)記“乙隊(duì)得1分”為事件,“甲隊(duì)得2分乙隊(duì)得1分”為事件;事件即乙隊(duì)三人中有2人答錯(cuò),其余1人答對,則,甲隊(duì)得2分乙隊(duì)得1分即事件、同時(shí)發(fā)生,則.【點(diǎn)睛】本題主要考查了相互獨(dú)立事件的概率計(jì)算,涉及n次獨(dú)立事件中恰有k次發(fā)生的概率公式的應(yīng)用,互斥事件的概率加法公式,屬于中檔題.18、(1);(2)(3)7.【解析】
(1)由可得為等差數(shù)列,從而可得數(shù)列的通項(xiàng)公式;(2)先判斷時(shí)數(shù)列的各項(xiàng)為正數(shù),時(shí)數(shù)列各項(xiàng)為負(fù)數(shù),分兩種情況討論分別利用等差數(shù)列求和公式求解即可;(3)求得利用裂項(xiàng)相消法求得,由可得結(jié)果.【詳解】(1)由題意,,為等差數(shù)列,設(shè)公差為,由題意得,.(2)若時(shí),時(shí),,故.(3),若對任意成立,的最小值是,對任意成立,的最大整數(shù)值是7,即存在最大整數(shù)使對任意,均有【點(diǎn)睛】本題主要考查等差數(shù)列的通項(xiàng)公式與求和公式,以及裂項(xiàng)相消法求和,屬于中檔題.裂項(xiàng)相消法是最難把握的求和方法之一,其原因是有時(shí)很難找到裂項(xiàng)的方向,突破這一難點(diǎn)的方法是根據(jù)式子的結(jié)構(gòu)特點(diǎn),常見的裂項(xiàng)技巧:(1);(2);(3);(4);此外,需注意裂項(xiàng)之后相消的過程中容易出現(xiàn)丟項(xiàng)或多項(xiàng)的問題,導(dǎo)致計(jì)算結(jié)果錯(cuò)誤.19、(1),,定義域;(2)【解析】
(1)由已知得,可求出、,由對數(shù)函數(shù)的定義域可得,求出的范圍,即可得到的定義域;(2)設(shè),可得,由復(fù)合函數(shù)單調(diào)性,可得在上的單調(diào)性,從而可得時(shí),的最大值,令,解不等式即可得到答案.【詳解】(1)由已知得,即,解得,,由得,所以,即,所以定義域?yàn)?(2),設(shè),由時(shí),可得,因?yàn)樵谏蠁握{(diào)遞增,所以可得在上單調(diào)遞增,故當(dāng)時(shí),的最大值為,由題意,,即,即,因?yàn)?,所以,?故時(shí),存在,使得成立.【點(diǎn)睛】本題考查對數(shù)函數(shù)的性質(zhì),考查復(fù)合函數(shù)單調(diào)性,考查存在性問題,考查學(xué)生的計(jì)算能力與推理能力,屬于中檔題.20、(1)(2)【解析】試題分析:(Ⅰ)先由正弦定理將三角形的邊角關(guān)系轉(zhuǎn)化為角角關(guān)系,再利用兩角和的正弦公式和誘導(dǎo)公式進(jìn)行求解;(Ⅱ)先利用余弦定理求出,再利用三角形的面積公式進(jìn)行求解.試題解析:(Ⅰ)由又所以.(Ⅱ)由余弦定理有,解得,所以點(diǎn)睛:在利用余弦定理進(jìn)行求解時(shí),往往利用整體思想,可減少計(jì)算量,若本題中的.21、(1)證明見解析;(2).【解析】
(1)線面垂直只需證明PD和平面內(nèi)兩條相交直線垂直即可,易得,另外中已知三邊長通過勾股定理易得,所以平面.(2)點(diǎn)B到平面P
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度新型電動出租車購置合同范本4篇
- 2025年度協(xié)議離婚房產(chǎn)分割合同范本3篇
- 2024起重機(jī)研發(fā)、制造與銷售合作框架合同3篇
- 2024版建筑腳手架施工安全合作合同書版B版
- 2024藥品研發(fā)生產(chǎn)項(xiàng)目廉潔合作合同范本3篇
- 2024智能化倉儲管理系統(tǒng)采購與升級合同2篇
- 2025年度知識產(chǎn)權(quán)出借與咨詢服務(wù)合同4篇
- 2025年度知識產(chǎn)權(quán)評估居間合同上訴狀4篇
- 2024離婚雙方關(guān)于調(diào)解程序的協(xié)議
- 2024版毛竹購銷合同模板
- 春節(jié)行車安全常識普及
- 電機(jī)維護(hù)保養(yǎng)專題培訓(xùn)課件
- 汽車租賃行業(yè)利潤分析
- 春節(jié)拜年的由來習(xí)俗來歷故事
- 2021火災(zāi)高危單位消防安全評估導(dǎo)則
- 佛山市服務(wù)業(yè)發(fā)展五年規(guī)劃(2021-2025年)
- 房屋拆除工程監(jiān)理規(guī)劃
- 醫(yī)院保安服務(wù)方案(技術(shù)方案)
- 高效能人士的七個(gè)習(xí)慣:實(shí)踐應(yīng)用課程:高級版
- 小數(shù)加減法計(jì)算題100道
- 通信電子線路(哈爾濱工程大學(xué))智慧樹知到課后章節(jié)答案2023年下哈爾濱工程大學(xué)
評論
0/150
提交評論