版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
吉林省長春市高中名校新高考考前提分?jǐn)?shù)學(xué)仿真卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若直線y=kx+1與圓x2+y2=1相交于P、Q兩點(diǎn),且∠POQ=120°(其中O為坐標(biāo)原點(diǎn)),則k的值為()A. B. C.或- D.和-2.設(shè)為銳角,若,則的值為()A. B. C. D.3.已知函數(shù),當(dāng)時(shí),恒成立,則的取值范圍為()A. B. C. D.4.已知函數(shù),則下列判斷錯(cuò)誤的是()A.的最小正周期為 B.的值域?yàn)镃.的圖象關(guān)于直線對(duì)稱 D.的圖象關(guān)于點(diǎn)對(duì)稱5.不等式組表示的平面區(qū)域?yàn)?,則()A., B.,C., D.,6.對(duì)于定義在上的函數(shù),若下列說法中有且僅有一個(gè)是錯(cuò)誤的,則錯(cuò)誤的一個(gè)是()A.在上是減函數(shù) B.在上是增函數(shù)C.不是函數(shù)的最小值 D.對(duì)于,都有7.正項(xiàng)等比數(shù)列中的、是函數(shù)的極值點(diǎn),則()A. B.1 C. D.28.已知雙曲線的一條漸近線方程是,則雙曲線的離心率為()A. B. C. D.9.對(duì)兩個(gè)變量進(jìn)行回歸分析,給出如下一組樣本數(shù)據(jù):,,,,下列函數(shù)模型中擬合較好的是()A. B. C. D.10.已知定義在上的函數(shù)滿足,且當(dāng)時(shí),,則方程的最小實(shí)根的值為()A. B. C. D.11.已知橢圓+=1(a>b>0)與直線交于A,B兩點(diǎn),焦點(diǎn)F(0,-c),其中c為半焦距,若△ABF是直角三角形,則該橢圓的離心率為()A. B. C. D.12.已知,若方程有唯一解,則實(shí)數(shù)的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某校初三年級(jí)共有名女生,為了了解初三女生分鐘“仰臥起坐”項(xiàng)目訓(xùn)練情況,統(tǒng)計(jì)了所有女生分鐘“仰臥起坐”測試數(shù)據(jù)(單位:個(gè)),并繪制了如下頻率分布直方圖,則分鐘至少能做到個(gè)仰臥起坐的初三女生有_____________個(gè).14.的展開式中的系數(shù)為________________.15.已知函數(shù),(其中e為自然對(duì)數(shù)的底數(shù)),若關(guān)于x的方程恰有5個(gè)相異的實(shí)根,則實(shí)數(shù)a的取值范圍為________.16.若x,y滿足,且y≥?1,則3x+y的最大值_____三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,四邊形為正方形,平面,點(diǎn)是棱的中點(diǎn),,.(1)若,證明:平面平面;(2)若三棱錐的體積為,求二面角的余弦值.18.(12分)已知函數(shù)在上的最大值為3.(1)求的值及函數(shù)的單調(diào)遞增區(qū)間;(2)若銳角中角所對(duì)的邊分別為,且,求的取值范圍.19.(12分)若函數(shù)在處有極值,且,則稱為函數(shù)的“F點(diǎn)”.(1)設(shè)函數(shù)().①當(dāng)時(shí),求函數(shù)的極值;②若函數(shù)存在“F點(diǎn)”,求k的值;(2)已知函數(shù)(a,b,,)存在兩個(gè)不相等的“F點(diǎn)”,,且,求a的取值范圍.20.(12分)已知△ABC三內(nèi)角A、B、C所對(duì)邊的長分別為a,b,c,且3sin2A+3sin2B=4sinAsinB+3sin2C.(1)求cosC的值;(2)若a=3,c,求△ABC的面積.21.(12分)如圖,直線y=2x-2與拋物線x2=2py(p>0)交于M1,M2兩點(diǎn),直線y=p2與(1)求p的值;(2)設(shè)A是直線y=p2上一點(diǎn),直線AM2交拋物線于另一點(diǎn)M3,直線M1M22.(10分)已知三點(diǎn)在拋物線上.(Ⅰ)當(dāng)點(diǎn)的坐標(biāo)為時(shí),若直線過點(diǎn),求此時(shí)直線與直線的斜率之積;(Ⅱ)當(dāng),且時(shí),求面積的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
直線過定點(diǎn),直線y=kx+1與圓x2+y2=1相交于P、Q兩點(diǎn),且∠POQ=120°(其中O為原點(diǎn)),可以發(fā)現(xiàn)∠QOx的大小,求得結(jié)果.【詳解】如圖,直線過定點(diǎn)(0,1),∵∠POQ=120°∴∠OPQ=30°,?∠1=120°,∠2=60°,∴由對(duì)稱性可知k=±.故選C.【點(diǎn)睛】本題考查過定點(diǎn)的直線系問題,以及直線和圓的位置關(guān)系,是基礎(chǔ)題.2、D【解析】
用誘導(dǎo)公式和二倍角公式計(jì)算.【詳解】.故選:D.【點(diǎn)睛】本題考查誘導(dǎo)公式、余弦的二倍角公式,解題關(guān)鍵是找出已知角和未知角之間的聯(lián)系.3、A【解析】
分析可得,顯然在上恒成立,只需討論時(shí)的情況即可,,然后構(gòu)造函數(shù),結(jié)合的單調(diào)性,不等式等價(jià)于,進(jìn)而求得的取值范圍即可.【詳解】由題意,若,顯然不是恒大于零,故.,則在上恒成立;當(dāng)時(shí),等價(jià)于,因?yàn)?所以.設(shè),由,顯然在上單調(diào)遞增,因?yàn)?所以等價(jià)于,即,則.設(shè),則.令,解得,易得在上單調(diào)遞增,在上單調(diào)遞減,從而,故.故選:A.【點(diǎn)睛】本題考查了不等式恒成立問題,利用函數(shù)單調(diào)性是解決本題的關(guān)鍵,考查了學(xué)生的推理能力,屬于基礎(chǔ)題.4、D【解析】
先將函數(shù)化為,再由三角函數(shù)的性質(zhì),逐項(xiàng)判斷,即可得出結(jié)果.【詳解】可得對(duì)于A,的最小正周期為,故A正確;對(duì)于B,由,可得,故B正確;對(duì)于C,正弦函數(shù)對(duì)稱軸可得:解得:,當(dāng),,故C正確;對(duì)于D,正弦函數(shù)對(duì)稱中心的橫坐標(biāo)為:解得:若圖象關(guān)于點(diǎn)對(duì)稱,則解得:,故D錯(cuò)誤;故選:D.【點(diǎn)睛】本題考查三角恒等變換,三角函數(shù)的性質(zhì),熟記三角函數(shù)基本公式和基本性質(zhì),考查了分析能力和計(jì)算能力,屬于基礎(chǔ)題.5、D【解析】
根據(jù)題意,分析不等式組的幾何意義,可得其表示的平面區(qū)域,設(shè),分析的幾何意義,可得的最小值,據(jù)此分析選項(xiàng)即可得答案.【詳解】解:根據(jù)題意,不等式組其表示的平面區(qū)域如圖所示,其中,,
設(shè),則,的幾何意義為直線在軸上的截距的2倍,
由圖可得:當(dāng)過點(diǎn)時(shí),直線在軸上的截距最大,即,當(dāng)過點(diǎn)原點(diǎn)時(shí),直線在軸上的截距最小,即,故AB錯(cuò)誤;
設(shè),則的幾何意義為點(diǎn)與點(diǎn)連線的斜率,由圖可得最大可到無窮大,最小可到無窮小,故C錯(cuò)誤,D正確;故選:D.【點(diǎn)睛】本題考查本題考查二元一次不等式的性質(zhì)以及應(yīng)用,關(guān)鍵是對(duì)目標(biāo)函數(shù)幾何意義的認(rèn)識(shí),屬于基礎(chǔ)題.6、B【解析】
根據(jù)函數(shù)對(duì)稱性和單調(diào)性的關(guān)系,進(jìn)行判斷即可.【詳解】由得關(guān)于對(duì)稱,若關(guān)于對(duì)稱,則函數(shù)在上不可能是單調(diào)的,故錯(cuò)誤的可能是或者是,若錯(cuò)誤,則在,上是減函數(shù),在在上是增函數(shù),則為函數(shù)的最小值,與矛盾,此時(shí)也錯(cuò)誤,不滿足條件.故錯(cuò)誤的是,故選:.【點(diǎn)睛】本題主要考查函數(shù)性質(zhì)的綜合應(yīng)用,結(jié)合對(duì)稱性和單調(diào)性的關(guān)系是解決本題的關(guān)鍵.7、B【解析】
根據(jù)可導(dǎo)函數(shù)在極值點(diǎn)處的導(dǎo)數(shù)值為,得出,再由等比數(shù)列的性質(zhì)可得.【詳解】解:依題意、是函數(shù)的極值點(diǎn),也就是的兩個(gè)根∴又是正項(xiàng)等比數(shù)列,所以∴.故選:B【點(diǎn)睛】本題主要考查了等比數(shù)列下標(biāo)和性質(zhì)以應(yīng)用,屬于中檔題.8、D【解析】雙曲線的漸近線方程是,所以,即,,即,,故選D.9、D【解析】
作出四個(gè)函數(shù)的圖象及給出的四個(gè)點(diǎn),觀察這四個(gè)點(diǎn)在靠近哪個(gè)曲線.【詳解】如圖,作出A,B,C,D中四個(gè)函數(shù)圖象,同時(shí)描出題中的四個(gè)點(diǎn),它們?cè)谇€的兩側(cè),與其他三個(gè)曲線都離得很遠(yuǎn),因此D是正確選項(xiàng),故選:D.【點(diǎn)睛】本題考查回歸分析,擬合曲線包含或靠近樣本數(shù)據(jù)的點(diǎn)越多,說明擬合效果好.10、C【解析】
先確定解析式求出的函數(shù)值,然后判斷出方程的最小實(shí)根的范圍結(jié)合此時(shí)的,通過計(jì)算即可得到答案.【詳解】當(dāng)時(shí),,所以,故當(dāng)時(shí),,所以,而,所以,又當(dāng)時(shí),的極大值為1,所以當(dāng)時(shí),的極大值為,設(shè)方程的最小實(shí)根為,,則,即,此時(shí)令,得,所以最小實(shí)根為411.故選:C.【點(diǎn)睛】本題考查函數(shù)與方程的根的最小值問題,涉及函數(shù)極大值、函數(shù)解析式的求法等知識(shí),本題有一定的難度及高度,是一道有較好區(qū)分度的壓軸選這題.11、A【解析】
聯(lián)立直線與橢圓方程求出交點(diǎn)A,B兩點(diǎn),利用平面向量垂直的坐標(biāo)表示得到關(guān)于的關(guān)系式,解方程求解即可.【詳解】聯(lián)立方程,解方程可得或,不妨設(shè)A(0,a),B(-b,0),由題意可知,·=0,因?yàn)?,,由平面向量垂直的坐?biāo)表示可得,,因?yàn)椋詀2-c2=ac,兩邊同時(shí)除以可得,,解得e=或(舍去),所以該橢圓的離心率為.故選:A【點(diǎn)睛】本題考查橢圓方程及其性質(zhì)、離心率的求解、平面向量垂直的坐標(biāo)表示;考查運(yùn)算求解能力和知識(shí)遷移能力;利用平面向量垂直的坐標(biāo)表示得到關(guān)于的關(guān)系式是求解本題的關(guān)鍵;屬于中檔題、??碱}型.12、B【解析】
求出的表達(dá)式,畫出函數(shù)圖象,結(jié)合圖象以及二次方程實(shí)根的分布,求出的范圍即可.【詳解】解:令,則,則,故,如圖示:由,得,函數(shù)恒過,,由,,可得,,,若方程有唯一解,則或,即或;當(dāng)即圖象相切時(shí),根據(jù),,解得舍去),則的范圍是,故選:.【點(diǎn)睛】本題考查函數(shù)的零點(diǎn)問題,考查函數(shù)方程的轉(zhuǎn)化思想和數(shù)形結(jié)合思想,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)數(shù)據(jù)先求出,再求出分鐘至少能做到個(gè)仰臥起坐的初三女生人數(shù)即可.【詳解】解:,.則分鐘至少能做到個(gè)仰臥起坐的初三女生人數(shù)為.故答案為:.【點(diǎn)睛】本題主要考查頻率分布直方圖,屬于基礎(chǔ)題.14、【解析】
在二項(xiàng)展開式的通項(xiàng)中令的指數(shù)為,求出參數(shù)值,然后代入通項(xiàng)可得出結(jié)果.【詳解】的展開式的通項(xiàng)為,令,因此,的展開式中的系數(shù)為.故答案為:.【點(diǎn)睛】本題考查二項(xiàng)展開式中指定項(xiàng)系數(shù)的求解,涉及二項(xiàng)展開式通項(xiàng)的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.15、【解析】
作出圖象,求出方程的根,分類討論的正負(fù),數(shù)形結(jié)合即可.【詳解】當(dāng)時(shí),令,解得,所以當(dāng)時(shí),,則單調(diào)遞增,當(dāng)時(shí),,則單調(diào)遞減,當(dāng)時(shí),單調(diào)遞減,且,作出函數(shù)的圖象如圖:(1)當(dāng)時(shí),方程整理得,只有2個(gè)根,不滿足條件;(2)若,則當(dāng)時(shí),方程整理得,則,,此時(shí)各有1解,故當(dāng)時(shí),方程整理得,有1解同時(shí)有2解,即需,,因?yàn)椋?),故此時(shí)滿足題意;或有2解同時(shí)有1解,則需,由(1)可知不成立;或有3解同時(shí)有0解,根據(jù)圖象不存在此種情況,或有0解同時(shí)有3解,則,解得,故,(3)若,顯然當(dāng)時(shí),和均無解,當(dāng)時(shí),和無解,不符合題意.綜上:的范圍是,故答案為:,【點(diǎn)睛】本題主要考查了函數(shù)零點(diǎn)與函數(shù)圖象的關(guān)系,考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平和分析推理能力,屬于中檔題.16、5.【解析】
由約束條件作出可行域,令z=3x+y,化為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案.【詳解】由題意作出可行域如圖陰影部分所示.設(shè),當(dāng)直線經(jīng)過點(diǎn)時(shí),取最大值5.故答案為:5【點(diǎn)睛】本題考查簡單的線性規(guī)劃,考查數(shù)形結(jié)合的解題思想方法,是中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】
(1)由已知可證得平面,則有,在中,由已知可得,即可證得平面,進(jìn)而證得結(jié)論.(2)過作交于,由為的中點(diǎn),結(jié)合已知有平面.則,可求得.建立坐標(biāo)系分別求得面的法向量,平面的一個(gè)法向量為,利用公式即可求得結(jié)果.【詳解】(1)證明:平面,平面,,又四邊形為正方形,.又、平面,且,平面..中,,為的中點(diǎn),.又、平面,,平面.平面,平面平面.(2)解:過作交于,如圖為的中點(diǎn),,.又平面,平面.,.所以,又、、兩兩互相垂直,以、、為坐標(biāo)軸建立如圖所示的空間直角坐標(biāo)系.,,,設(shè)平面的法向量,則,即.令,則,..平面的一個(gè)法向量為.二面角的余弦值為.【點(diǎn)睛】本題考查面面垂直的證明方法,考查了空間線線、線面、面面位置關(guān)系,考查利用向量法求二面角的方法,難度一般.18、(1),函數(shù)的單調(diào)遞增區(qū)間為;(2).【解析】
(1)運(yùn)用降冪公式和輔助角公式,把函數(shù)的解析式化為正弦型函數(shù)解析式形式,根據(jù)已知,可以求出的值,再結(jié)合正弦型函數(shù)的性質(zhì)求出函數(shù)的單調(diào)遞增區(qū)間;(2)由(1)結(jié)合已知,可以求出角的值,通過正弦定理把問題的取值范圍轉(zhuǎn)化為兩邊對(duì)角的正弦值的比值的取值范圍,結(jié)合已知是銳角三角形,三角形內(nèi)角和定理,最后求出的取值范圍.【詳解】解:(1)由已知,所以因此令得因此函數(shù)的單調(diào)遞增區(qū)間為(2)由已知,∴由得,因此所以因?yàn)闉殇J角三角形,所以,解得因此,那么【點(diǎn)睛】本題考查了降冪公式、輔助角公式,考查了正弦定理,考查了正弦型三角函數(shù)的單調(diào)性,考查了數(shù)學(xué)運(yùn)算能力.19、(1)①極小值為1,無極大值.②實(shí)數(shù)k的值為1.(2)【解析】
(1)①將代入可得,求導(dǎo)討論函數(shù)單調(diào)性,即得極值;②設(shè)是函數(shù)的一個(gè)“F點(diǎn)”(),即是的零點(diǎn),那么由導(dǎo)數(shù)可知,且,可得,根據(jù)可得,設(shè),由的單調(diào)性可得,即得.(2)方法一:先求的導(dǎo)數(shù),存在兩個(gè)不相等的“F點(diǎn)”,,可以由和韋達(dá)定理表示出,的關(guān)系,再由,可得的關(guān)系式,根據(jù)已知解即得.方法二:由函數(shù)存在不相等的兩個(gè)“F點(diǎn)”和,可知,是關(guān)于x的方程組的兩個(gè)相異實(shí)數(shù)根,由得,分兩種情況:是函數(shù)一個(gè)“F點(diǎn)”,不是函數(shù)一個(gè)“F點(diǎn)”,進(jìn)行討論即得.【詳解】解:(1)①當(dāng)時(shí),(),則有(),令得,列表如下:x10極小值故函數(shù)在處取得極小值,極小值為1,無極大值.②設(shè)是函數(shù)的一個(gè)“F點(diǎn)”().(),是函數(shù)的零點(diǎn).,由,得,,由,得,即.設(shè),則,所以函數(shù)在上單調(diào)增,注意到,所以方程存在唯一實(shí)根1,所以,得,根據(jù)①知,時(shí),是函數(shù)的極小值點(diǎn),所以1是函數(shù)的“F點(diǎn)”.綜上,得實(shí)數(shù)k的值為1.(2)由(a,b,,),可得().又函數(shù)存在不相等的兩個(gè)“F點(diǎn)”和,,是關(guān)于x的方程()的兩個(gè)相異實(shí)數(shù)根.又,,,即,從而,,即..,,解得.所以,實(shí)數(shù)a的取值范圍為.(2)(解法2)因?yàn)椋╝,b,,)所以().又因?yàn)楹瘮?shù)存在不相等的兩個(gè)“F點(diǎn)”和,所以,是關(guān)于x的方程組的兩個(gè)相異實(shí)數(shù)根.由得,.(2.1)當(dāng)是函數(shù)一個(gè)“F點(diǎn)”時(shí),且.所以,即.又,所以,所以.又,所以.(2.2)當(dāng)不是函數(shù)一個(gè)“F點(diǎn)”時(shí),則,是關(guān)于x的方程的兩個(gè)相異實(shí)數(shù)根.又,所以得所以,得.所以,得.綜合(2.1)(2.2),實(shí)數(shù)a的取值范圍為.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求函數(shù)極值,以及由函數(shù)的極值求參數(shù)值等,是一道關(guān)于函數(shù)導(dǎo)數(shù)的綜合性題目,考查學(xué)生的分析和數(shù)學(xué)運(yùn)算能力,有一定難度.20、(1);(2)或.【解析】
(1)利用正弦定理對(duì)已知代數(shù)式化簡,根據(jù)余弦定理求解余弦值;(2)根據(jù)余弦定理求出b=1或b=3,結(jié)合面積公式求解.【詳解】(1)已知等式3sin2A+3sin2B=4sinAsinB+3sin2C,利用正弦定理化簡得:3a2+3b2﹣3c2=4ab,即a2+b2﹣c2ab,∴cosC;(2)把a(bǔ)=3,c,代入3a2+3b2﹣3c2=4ab得:b=1或b=3,∵cosC,C為三角形內(nèi)角,∴sinC,∴S△ABCabsinC3×bb,則△ABC的面積為或.【點(diǎn)睛】此題考查利用正
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度水利工程專用塊石供應(yīng)合同3篇
- 二零二五年度班組安全文化建設(shè)與宣傳合同3篇
- 二零二五年度倉儲(chǔ)庫房租賃合同范本(含押金條款)3篇
- 二零二五年度生物制藥原料購銷合同范本3篇
- 化妝品行業(yè)的保安工作總結(jié)
- 2024版租賃出租車服務(wù)合同3篇
- 二零二五年度城市清潔服務(wù)合同2篇
- 二零二五年度物業(yè)公司空調(diào)清洗保養(yǎng)服務(wù)合同2篇
- 二零二五年度涂料材料買賣合同終止與環(huán)保標(biāo)準(zhǔn)執(zhí)行協(xié)議3篇
- 2024清潔勞務(wù)分包合同范本:醫(yī)院病房清潔維護(hù)服務(wù)協(xié)議6篇
- 公租房續(xù)租申請(qǐng)書范文示例
- 事故處理程序全套
- 2023年社工考試《社會(huì)工作綜合能力》(初級(jí))真題(含答案)
- 2023-2024學(xué)年江蘇省徐州市九年級(jí)(上)期中物理試卷
- 硅石項(xiàng)目建議書范本
- 起重機(jī)械安全生產(chǎn)隱患課件
- 概率論在金融風(fēng)險(xiǎn)評(píng)估中的應(yīng)用研究
- 信訪十種情形追責(zé)問責(zé)制度
- 大型儲(chǔ)罐施工工法倒裝法安裝
- 手機(jī)歸屬地表格
- 一年級(jí)上冊(cè)數(shù)學(xué)思維教材
評(píng)論
0/150
提交評(píng)論