北京首師大附中2024屆中考聯(lián)考數(shù)學試卷含解析_第1頁
北京首師大附中2024屆中考聯(lián)考數(shù)學試卷含解析_第2頁
北京首師大附中2024屆中考聯(lián)考數(shù)學試卷含解析_第3頁
北京首師大附中2024屆中考聯(lián)考數(shù)學試卷含解析_第4頁
北京首師大附中2024屆中考聯(lián)考數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

北京首師大附中2024屆中考聯(lián)考數(shù)學試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.已知拋物線y=x2-2mx-4(m>0)的頂點M關(guān)于坐標原點O的對稱點為M′,若點M′在這條拋物線上,則點M的坐標為()A.(1,-5) B.(3,-13) C.(2,-8) D.(4,-20)2.已知關(guān)于x的一元二次方程3x2+4x﹣5=0,下列說法正確的是()A.方程有兩個相等的實數(shù)根B.方程有兩個不相等的實數(shù)根C.沒有實數(shù)根D.無法確定3.已知反比例函數(shù),下列結(jié)論不正確的是()A.圖象經(jīng)過點(﹣2,1) B.圖象在第二、四象限C.當x<0時,y隨著x的增大而增大 D.當x>﹣1時,y>24.某市從今年1月1日起調(diào)整居民用水價格,每立方米水費上漲.小麗家去年12月份的水費是15元,而今年5月的水費則是10元.已知小麗家今年5月的用水量比去年12月的用水量多5m1.求該市今年居民用水的價格.設(shè)去年居民用水價格為x元/m1,根據(jù)題意列方程,正確的是()A. B.C. D.5.一元二次方程的根是()A. B.C. D.6.如圖,直線a∥b,直線c與直線a、b分別交于點A、點B,AC⊥AB于點A,交直線b于點C.如果∠1=34°,那么∠2的度數(shù)為()A.34° B.56° C.66° D.146°7.點A(x1,y1),B(x2,y2),C(x3,y3)在反比例函數(shù)y=的圖象上,若x1<x2<0<x3,則y1,y2,y3的大小關(guān)系是()A.y1<y2<y3 B.y2<y3<y1 C.y3<y2<y1 D.y2<y1<y38.《九章算術(shù)》中的算籌圖是豎排的,為看圖方便,我們把它改為橫排,如圖1,圖2所示,圖中各行從左到右列出的算籌數(shù)分別表示未知數(shù)x,y的系數(shù)與相應的常數(shù)項.把圖1表示的算籌圖用我們現(xiàn)在所熟悉的方程組形式表述出來,就是.類似地,圖2所示的算籌圖我們可以表述為()A. B. C. D.9.如圖,是由幾個大小相同的小立方塊所搭幾何體的俯視圖,其中小正方形中的數(shù)字表示在該位置的小立方塊的個數(shù),則這個幾何體的主視圖是()A. B. C. D.10.關(guān)于的敘述正確的是()A.= B.在數(shù)軸上不存在表示的點C.=± D.與最接近的整數(shù)是3二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在△ABC中,BC=8,高AD=6,矩形EFGH的一邊EF在邊BC上,其余兩個頂點G、H分別在邊AC、AB上,則矩形EFGH的面積最大值為_____.12.計算:|﹣3|+(﹣1)2=.13.將一個含45°角的三角板,如圖擺放在平面直角坐標系中,將其繞點順時針旋轉(zhuǎn)75°,點的對應點恰好落在軸上,若點的坐標為,則點的坐標為____________.14.如圖,小陽發(fā)現(xiàn)電線桿的影子落在土坡的坡面和地面上,量得,米,與地面成角,且此時測得米的影長為米,則電線桿的高度為__________米.15.如圖,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,將△ABC繞點B順時針旋轉(zhuǎn)60°,得到△BDE,連接DC交AB于點F,則△ACF與△BDF的周長之和為_______cm.16.如圖,正五邊形ABCDE放入某平面直角坐標系后,若頂點A,B,C,D的坐標分別是(0,a),(﹣3,2),(b,m),(c,m),則點E的坐標是_____.17.在一個不透明的口袋中裝有4個紅球和若干個白球,它們除顏色外其他完全相同,通過多次摸球試驗后發(fā)現(xiàn),摸到紅球的頻率穩(wěn)定在25%附近,則口袋中白球可能有_____個.三、解答題(共7小題,滿分69分)18.(10分)如圖1,點為正的邊上一點(不與點重合),點分別在邊上,且.(1)求證:;(2)設(shè),的面積為,的面積為,求(用含的式子表示);(3)如圖2,若點為邊的中點,求證:.圖1圖219.(5分)如圖,AB為⊙O的直徑,點E在⊙O上,C為的中點,過點C作直線CD⊥AE于D,連接AC、BC.(1)試判斷直線CD與⊙O的位置關(guān)系,并說明理由;(2)若AD=2,AC=,求AB的長.20.(8分)如圖,內(nèi)接于,,的延長線交于點.(1)求證:平分;(2)若,,求和的長.21.(10分)如圖1,AB為半圓O的直徑,D為BA的延長線上一點,DC為半圓O的切線,切點為C.(1)求證:∠ACD=∠B;(2)如圖2,∠BDC的平分線分別交AC,BC于點E,F(xiàn),求∠CEF的度數(shù).22.(10分)如圖,拋物線y=﹣x2+bx+c與x軸交于點A和點B(3,0),與y軸交于點C(0,3),點D是拋物線的頂點,過點D作x軸的垂線,垂足為E,連接DB.(1)求此拋物線的解析式及頂點D的坐標;(2)點M是拋物線上的動點,設(shè)點M的橫坐標為m.①當∠MBA=∠BDE時,求點M的坐標;②過點M作MN∥x軸,與拋物線交于點N,P為x軸上一點,連接PM,PN,將△PMN沿著MN翻折,得△QMN,若四邊形MPNQ恰好為正方形,直接寫出m的值.23.(12分)小強想知道湖中兩個小亭A、B之間的距離,他在與小亭A、B位于同一水平面且東西走向的湖邊小道I上某一觀測點M處,測得亭A在點M的北偏東30°,亭B在點M的北偏東60°,當小明由點M沿小道I向東走60米時,到達點N處,此時測得亭A恰好位于點N的正北方向,繼續(xù)向東走30米時到達點Q處,此時亭B恰好位于點Q的正北方向,根據(jù)以上測量數(shù)據(jù),請你幫助小強計算湖中兩個小亭A、B之間的距離.24.(14分)為了維護國家主權(quán)和海洋權(quán)利,海監(jiān)部門對我國領(lǐng)海實現(xiàn)了常態(tài)化巡航管理,如圖,正在執(zhí)行巡航任務的海監(jiān)船以每小時50海里的速度向正東方航行,在A處測得燈塔P在北偏東60°方向上,繼續(xù)航行1小時到達B處,此時測得燈塔P在北偏東30°方向上.求∠APB的度數(shù);已知在燈塔P的周圍25海里內(nèi)有暗礁,問海監(jiān)船繼續(xù)向正東方向航行是否安全?.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】試題分析:=,∴點M(m,﹣m2﹣1),∴點M′(﹣m,m2+1),∴m2+2m2﹣1=m2+1.解得m=±2.∵m>0,∴m=2,∴M(2,﹣8).故選C.考點:二次函數(shù)的性質(zhì).2、B【解析】試題分析:先求出△=42﹣4×3×(﹣5)=76>0,即可判定方程有兩個不相等的實數(shù)根.故答案選B.考點:一元二次方程根的判別式.3、D【解析】

A選項:把(-2,1)代入解析式得:左邊=右邊,故本選項正確;

B選項:因為-2<0,圖象在第二、四象限,故本選項正確;

C選項:當x<0,且k<0,y隨x的增大而增大,故本選項正確;

D選項:當x>0時,y<0,故本選項錯誤.

故選D.4、A【解析】解:設(shè)去年居民用水價格為x元/cm1,根據(jù)題意列方程:,故選A.5、D【解析】試題分析:此題考察一元二次方程的解法,觀察發(fā)現(xiàn)可以采用提公因式法來解答此題.原方程可化為:,因此或,所以.故選D.考點:一元二次方程的解法——因式分解法——提公因式法.6、B【解析】分析:先根據(jù)平行線的性質(zhì)得出∠2+∠BAD=180°,再根據(jù)垂直的定義求出∠2的度數(shù).詳解:∵直線a∥b,∴∠2+∠BAD=180°.∵AC⊥AB于點A,∠1=34°,∴∠2=180°﹣90°﹣34°=56°.故選B.點睛:本題主要考查了平行線的性質(zhì),解題的關(guān)鍵是掌握兩直線平行,同旁內(nèi)角互補,此題難度不大.7、D【解析】

先根據(jù)反比例函數(shù)的解析式判斷出函數(shù)圖象所在的象限,再根據(jù)x1<x2<0<x1,判斷出三點所在的象限,再根據(jù)函數(shù)的增減性即可得出結(jié)論.【詳解】∵反比例函數(shù)y=中,k=1>0,∴此函數(shù)圖象的兩個分支在一、三象限,∵x1<x2<0<x1,∴A、B在第三象限,點C在第一象限,∴y1<0,y2<0,y1>0,∵在第三象限y隨x的增大而減小,∴y1>y2,∴y2<y1<y1.故選D.【點睛】本題考查的是反比例函數(shù)圖象上點的坐標特點,先根據(jù)題意判斷出函數(shù)圖象所在的象限及三點所在的象限是解答此題的關(guān)鍵.8、A【解析】

根據(jù)圖形,結(jié)合題目所給的運算法則列出方程組.【詳解】圖2所示的算籌圖我們可以表述為:.故選A.【點睛】本題考查了由實際問題抽象出二元一次方程組,解答本題的關(guān)鍵是讀懂題意,設(shè)出未知數(shù),找出合適的等量關(guān)系,列出方程組.9、C【解析】

由俯視圖知該幾何體共2列,其中第1列前一排1個正方形、后1排2個正方形,第2列只有前排2個正方形,據(jù)此可得.【詳解】由俯視圖知該幾何體共2列,其中第1列前一排1個正方形、后1排2個正方形,第2列只有前排2個正方形,所以其主視圖為:故選C.【點睛】考查了三視圖的知識,主視圖是從物體的正面看得到的視圖.10、D【解析】

根據(jù)二次根式的加法法則、實數(shù)與數(shù)軸上的點是一一對應的關(guān)系、二次根式的化簡及無理數(shù)的估算對各項依次分析,即可解答.【詳解】選項A,+無法計算;選項B,在數(shù)軸上存在表示的點;選項C,;選項D,與最接近的整數(shù)是=1.故選D.【點睛】本題考查了二次根式的加法法則、實數(shù)與數(shù)軸上的點是一一對應的關(guān)系、二次根式的化簡及無理數(shù)的估算等知識點,熟記這些知識點是解題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】

設(shè)HG=x,根據(jù)相似三角形的性質(zhì)用x表示出KD,根據(jù)矩形面積公式列出二次函數(shù)解析式,根據(jù)二次函數(shù)的性質(zhì)計算即可.【詳解】解:設(shè)HG=x.∵四邊形EFGH是矩形,∴HG∥BC,∴△AHG∽△ABC,∴=,即=,解得:KD=6﹣x,則矩形EFGH的面積=x(6﹣x)=﹣x2+6x=(x﹣4)2+1,則矩形EFGH的面積最大值為1.故答案為1.【點睛】本題考查的是相似三角形的判定和性質(zhì)、二次函數(shù)的性質(zhì),掌握相似三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵.12、4.【解析】

|﹣3|+(﹣1)2=4,故答案為4.13、【解析】

先求得∠ACO=60°,得出∠OAC=30°,求得AC=2OC=2,解等腰直角三角形求得直角邊為,從而求出B′的坐標.【詳解】解:∵∠ACB=45°,∠BCB′=75°,

∴∠ACB′=120°,

∴∠ACO=60°,

∴∠OAC=30°,

∴AC=2OC,

∵點C的坐標為(1,0),

∴OC=1,

∴AC=2OC=2,

∵△ABC是等腰直角三角形,∴B′點的坐標為【點睛】此題主要考查了旋轉(zhuǎn)的性質(zhì)及坐標與圖形變換,同時也利用了直角三角形性質(zhì),首先利用直角三角形的性質(zhì)得到有關(guān)線段的長度,即可解決問題.14、(14+2)米【解析】

過D作DE⊥BC的延長線于E,連接AD并延長交BC的延長線于F,根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半求出DE,再根據(jù)勾股定理求出CE,然后根據(jù)同時同地物高與影長成正比列式求出EF,再求出BF,再次利用同時同地物高與影長成正比列式求解即可.【詳解】如圖,過D作DE⊥BC的延長線于E,連接AD并延長交BC的延長線于F.∵CD=8,CD與地面成30°角,∴DE=CD=×8=4,根據(jù)勾股定理得:CE===4.∵1m桿的影長為2m,∴=,∴EF=2DE=2×4=8,∴BF=BC+CE+EF=20+4+8=(28+4).∵=,∴AB=(28+4)=14+2.故答案為(14+2).【點睛】本題考查了相似三角形的應用,主要利用了同時同地物高與影長成正比的性質(zhì),作輔助線求出AB的影長若全在水平地面上的長BF是解題的關(guān)鍵.15、1.【解析】試題分析:∵將△ABC繞點B順時針旋轉(zhuǎn)60°,得到△BDE,∴△ABC≌△BDE,∠CBD=60°,∴BD=BC=12cm,∴△BCD為等邊三角形,∴CD=BC=CD=12cm,在Rt△ACB中,AB===13,△ACF與△BDF的周長之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=1(cm),故答案為1.考點:旋轉(zhuǎn)的性質(zhì).16、(3,2).【解析】

根據(jù)題意得出y軸位置,進而利用正多邊形的性質(zhì)得出E點坐標.【詳解】解:如圖所示:∵A(0,a),∴點A在y軸上,∵C,D的坐標分別是(b,m),(c,m),∴B,E點關(guān)于y軸對稱,∵B的坐標是:(﹣3,2),∴點E的坐標是:(3,2).故答案為:(3,2).【點睛】此題主要考查了正多邊形和圓,正確得出y軸的位置是解題關(guān)鍵.17、1.【解析】

由摸到紅球的頻率穩(wěn)定在25%附近得出口袋中得到紅色球的概率,進而求出白球個數(shù)即可.【詳解】設(shè)白球個數(shù)為:x個,∵摸到紅色球的頻率穩(wěn)定在25%左右,∴口袋中得到紅色球的概率為25%,∴44+x=1解得:x=1,故白球的個數(shù)為1個.故答案為:1.【點睛】此題主要考查了利用頻率估計概率,根據(jù)大量反復試驗下頻率穩(wěn)定值即概率得出是解題關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)詳見解析;(1)詳見解析;(3)詳見解析.【解析】

(1)根據(jù)兩角對應相等的兩個三角形相似即可判斷;

(1)如圖1中,分別過E,F(xiàn)作EG⊥BC于G,F(xiàn)H⊥BC于H,S1=?BD?EG=?BD?EG=?a?BE?sin60°=?a?BE,S1=?CD?FH=?b?CF,可得S1?S1=ab?BE?CF,由(1)得△BDE∽△CFD,,即BE?FC=BD?CD=ab,即可推出S1?S1=a1b1;

(3)想辦法證明△DFE∽△CFD,推出,即DF1=EF?FC;【詳解】(1)證明:如圖1中,

在△BDE中,∠BDE+∠DEB+∠B=180°,又∠BDE+∠EDF+∠FDC=180°,

∴∠BDE+∠DEB+∠B=∠BDE+∠EDF+∠FDC,

∵∠EDF=∠B,

∴∠DEB=∠FDC,

又∠B=∠C,

∴△BDE∽△CFD.

(1)如圖1中,分別過E,F(xiàn)作EG⊥BC于G,F(xiàn)H⊥BC于H,

S1=?BD?EG=?BD?EG=?a?BE?sin60°=?a?BE,S1=?CD?FH=?b?CF,

∴S1?S1=ab?BE?CF

由(1)得△BDE∽△CFD,

∴,即BE?FC=BD?CD=ab,

∴S1?S1=a1b1.(3)由(1)得△BDE∽△CFD,

∴,

又BD=CD,

∴,

又∠EDF=∠C=60°,

∴△DFE∽△CFD,

∴,即DF1=EF?FC.【點睛】本題考查了相似形綜合題、等邊三角形的性質(zhì)、相似三角形的判定和性質(zhì)、三角形的面積等知識,解題的關(guān)鍵是正確尋找相似三角形的相似的條件.19、(1)證明見解析(2)3【解析】

(1)連接,由為的中點,得到,等量代換得到,根據(jù)平行線的性質(zhì)得到,即可得到結(jié)論;(2)連接,由勾股定理得到,根據(jù)切割線定理得到,根據(jù)勾股定理得到,由圓周角定理得到,即可得到結(jié)論.【詳解】相切,連接,∵為的中點,∴,∵,∴,∴,∴,∵,∴,∴直線與相切;方法:連接,∵,,∵,∴,∵是的切線,∴,∴,∴,∵為的中點,∴,∵為的直徑,∴,∴.方法:∵,易得,∴,∴.【點睛】本題考查了直線與圓的位置關(guān)系,切線的判定和性質(zhì),圓周角定理,勾股定理,平行線的性質(zhì),切割線定理,熟練掌握各定理是解題的關(guān)鍵.20、(1)證明見解析;(2)AC=,CD=,【解析】分析:(1)延長AO交BC于H,連接BO,證明A、O在線段BC的垂直平分線上,得出AO⊥BC,再由等腰三角形的性質(zhì)即可得出結(jié)論;(2)延長CD交⊙O于E,連接BE,則CE是⊙O的直徑,由圓周角定理得出∠EBC=90°,∠E=∠BAC,得出sinE=sin∠BAC,求出CE=BC=10,由勾股定理求出BE=8,證出BE∥OA,得出,求出OD=,得出CD=,而BE∥OA,由三角形中位線定理得出OH=BE=4,CH=BC=3,在Rt△ACH中,由勾股定理求出AC的長即可.本題解析:解:(1)證明:延長AO交BC于H,連接BO.∵AB=AC,OB=OC,∴A,O在線段BC的垂直平分線上.∴AO⊥BC.又∵AB=AC,∴AO平分∠BAC.(2)延長CD交⊙O于E,連接BE,則CE是⊙O的直徑.∴∠EBC=90°,BC⊥BE.∵∠E=∠BAC,∴sinE=sin∠BAC.∴=.∴CE=BC=10.∴BE==8,OA=OE=CE=5.∵AH⊥BC,∴BE∥OA.∴=,即=,解得OD=.∴CD=5+=.∵BE∥OA,即BE∥OH,OC=OE,∴OH是△CEB的中位線.∴OH=BE=4,CH=BC=3.∴AH=5+4=9.在Rt△ACH中,AC===3.點睛:本題考查了等腰三角形的判定與性質(zhì)、三角函數(shù)及圓的有關(guān)計算,(1)中由三線合一定理求解是解題的關(guān)鍵,(2)中由圓周角定理得出∠EBC=90°,∠E=∠BAC,再利用三角函數(shù)及三角形中位線定理求出AC即可,本題綜合性強,有一定難度.21、(1)詳見解析;(2)∠CEF=45°.【解析】試題分析:(1)連接OC,根據(jù)切線的性質(zhì)和直徑所對的圓周角是直角得出∠DCO=∠ACB=90°,然后根據(jù)等角的余角相等即可得出結(jié)論;(2)根據(jù)三角形的外角的性質(zhì)證明∠CEF=∠CFE即可求解.試題解析:(1)證明:如圖1中,連接OC.∵OA=OC,∴∠1=∠2,∵CD是⊙O切線,∴OC⊥CD,∴∠DCO=90°,∴∠3+∠2=90°,∵AB是直徑,∴∠1+∠B=90°,∴∠3=∠B.(2)解:∵∠CEF=∠ECD+∠CDE,∠CFE=∠B+∠FDB,∵∠CDE=∠FDB,∠ECD=∠B,∴∠CEF=∠CFE,∵∠ECF=90°,∴∠CEF=∠CFE=45°.22、(1)(1,4)(2)①點M坐標(﹣,)或(﹣,﹣);②m的值為或【解析】

(1)利用待定系數(shù)法即可解決問題;(2)①根據(jù)tan∠MBA=,tan∠BDE==,由∠MBA=∠BDE,構(gòu)建方程即可解決問題;②因為點M、N關(guān)于拋物線的對稱軸對稱,四邊形MPNQ是正方形,推出點P是拋物線的對稱軸與x軸的交點,即OP=1,易證GM=GP,即|-m2+2m+3|=|1-m|,解方程即可解決問題.【詳解】解:(1)把點B(3,0),C(0,3)代入y=﹣x2+bx+c,得到,解得,∴拋物線的解析式為y=﹣x2+2x+3,∵y=﹣x2+2x﹣1+1+3=﹣(x﹣1)2+4,∴頂點D坐標(1,4);(2)①作MG⊥x軸于G,連接BM.則∠MGB=90°,設(shè)M(m,﹣m2+2m+3),∴MG=|﹣m2+2m+3|,BG=3﹣m,∴tan∠MBA=,∵DE⊥x軸,D(1,4),∴∠DEB=90°,DE=4,OE=1,∵B(3,0),∴BE=2,∴tan∠BDE==,∵∠MBA=∠BDE,∴=,當點M在x軸上方時,=,解得m=﹣或3(舍棄),∴M(﹣,),當點M在x軸下方時,=,解得m=﹣或m=3(舍棄

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論