版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
四川成都錦江區(qū)2025屆九年級數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.一次函數(shù)與二次函數(shù)在同一平面直角坐標(biāo)系中的圖象可能是().A. B. C. D.2.要使方程是關(guān)于x的一元二次方程,則()A.a(chǎn)≠0 B.a(chǎn)≠3C.a(chǎn)≠3且b≠-1 D.a(chǎn)≠3且b≠-1且c≠03.同學(xué)們參加綜合實踐活動時,看到木工師傅用“三弧法”在板材邊角處作直角,其作法是:如圖:(1)作線段AB,分別以點A,B為圓心,AB長為半徑作弧,兩弧交于點C;(2)以點C為圓心,仍以AB長為半徑作弧交AC的延長線于點D;(3)連接BD,BC.根據(jù)以上作圖過程及所作圖形,下列結(jié)論中錯誤的是()A.∠ABD=90° B.CA=CB=CD C.sinA= D.cosD=4.同桌讀了:“子非魚焉知魚之樂乎?”后,興高采烈地利用電腦畫出了幾幅魚的圖案,請問:由左圖中所示的圖案平移后得到的圖案是()A. B. C. D.5.將一元二次方程配方后所得的方程是()A. B.C. D.6.如圖,熱氣球的探測器顯示,從熱氣球A看一棟高樓頂部B的仰角為300,看這棟高樓底部C的俯角為600,熱氣球A與高樓的水平距離為120m,這棟高樓BC的高度為()A.40m B.80m C.120m D.160m7.在Rt△ABC中,∠C=90°,sinA=,則∠A的度數(shù)是()A.30° B.45° C.60° D.90°8.2019年教育部等九部門印發(fā)中小學(xué)生減負(fù)三十條:嚴(yán)控書面作業(yè)總量,初中家庭作業(yè)不超過90分鐘.某初中學(xué)校為了盡快落實減負(fù)三十條,了解學(xué)生做書面家庭作業(yè)的時間,隨機調(diào)查了40名同學(xué)每天做書面家庭作業(yè)的時間,情況如下表.下列關(guān)于40名同學(xué)每天做書面家庭作業(yè)的時間說法中,錯誤的是()書面家庭作業(yè)時間(分鐘)708090100110學(xué)生人數(shù)(人)472072A.眾數(shù)是90分鐘 B.估計全校每天做書面家庭作業(yè)的平均時間是89分鐘C.中位數(shù)是90分鐘 D.估計全校每天做書面家庭作業(yè)的時間超過90分鐘的有9人9.如圖,已知⊙O的半徑為4,四邊形ABCD為⊙O的內(nèi)接四邊形,且AB=4,AD=4,則∠BCD的度數(shù)為()A.105° B.115° C.120° D.135°10.二次函數(shù)y=+2的頂點是()A.(1,2) B.(1,?2) C.(?1,2) D.(?1,?2)11.如圖,等邊三角形ABC的邊長為5,D、E分別是邊AB、AC上的點,將△ADE沿DE折疊,點A恰好落在BC邊上的點F處,若BF=2,則BD的長是()A.2 B.3 C. D.12.中,,若,,則的長為()A. B. C. D.5二、填空題(每題4分,共24分)13.若圓錐的底面周長是10,側(cè)面展開后所得的扇形圓心角為90°,則該圓錐的側(cè)面積是__________。14.如右圖是一個立體圖形的三視圖,那么這個立體圖形的體積為______.15.在比例尺為1:3000000的地圖上,測得AB兩地間的圖上距離為5厘米,則AB兩地間的實際距離是______千米.16.如圖,在矩形中對角線與相交于點,,垂足為點,且,則的長為___________.17.已知△ABC,D、E分別在AC、BC邊上,且DE∥AB,CD=2,DA=3,△CDE面積是4,則△ABC的面積是______18.如圖,在圓中,是弦,點是劣弧的中點,聯(lián)結(jié),平分,聯(lián)結(jié)、,那么__________度.三、解答題(共78分)19.(8分)為了響應(yīng)政府提出的由中國制造向中國創(chuàng)造轉(zhuǎn)型的號召,某公司自主設(shè)計了一款成本為40元的可控溫杯,并投放市場進行試銷售,經(jīng)過調(diào)查發(fā)現(xiàn)該產(chǎn)品每天的銷售量y(件)與銷售單價x(元)滿足一次函數(shù)關(guān)系:y=﹣10x+1.(1)求出利潤S(元)與銷售單價x(元)之間的關(guān)系式(利潤=銷售額﹣成本);(2)當(dāng)銷售單價定為多少時,該公司每天獲取的利潤最大?最大利潤是多少元?20.(8分)如圖,放置在水平桌面上的臺燈的燈臂AB長為40cm,燈罩BC長為30cm,底座厚度為2cm,燈臂與底座構(gòu)成的∠BAD=60°,使用發(fā)現(xiàn),光線最佳時燈罩BC與水平線所成的角為30°,此時燈罩頂端C到桌面的高度CE是多少cm?21.(8分)請回答下列問題.(1)計算:(2)解方程:22.(10分)已知與成反比例,當(dāng)時,,求與的函數(shù)表達式.23.(10分)如圖,在Rt△ABC中,∠B=90°,∠A的平分線交BC于D,E為AB上一點,DE=DC,以D為圓心,以DB的長為半徑畫圓.求證:(1)AC是⊙D的切線;(2)AB+EB=AC.24.(10分)如圖,在直角坐標(biāo)系中,拋物線y=ax2+bx-2與x軸交于點A(-3,0)、B(1,0),與y軸交于點C.(1)求拋物線的函數(shù)表達式.(2)在拋物線上是否存在點D,使得△ABD的面積等于△ABC的面積的倍?若存在,求出點D的坐標(biāo);若不存在,請說明理由.(3)若點E是以點C為圓心且1為半徑的圓上的動點,點F是AE的中點,請直接寫出線段OF的最大值和最小值.25.(12分)某工廠設(shè)計了一款成本為20元/件的工藝品投放市場進行試銷,經(jīng)過調(diào)查,得到如下數(shù)據(jù):銷售單價(元/件)…30405060…每天銷售量(件)…500400300200…(1)研究發(fā)現(xiàn),每天銷售量與單價滿足一次函數(shù)關(guān)系,求出與的關(guān)系式;(2)當(dāng)?shù)匚飪r部門規(guī)定,該工藝品銷售單價最高不能超過45元/件,那么銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤8000元?26.如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm.點P從B出發(fā),沿BC方向,以1cm/s的速度向點C運動,點Q從A出發(fā),沿AB方向,以2cm/s的速度向點B運動;若兩點同時出發(fā),當(dāng)其中一點到達端點時,兩點同時停止運動,設(shè)運動時間為t(s)(t>0),△BPQ的面積為S(cm2).(1)t=2秒時,則點P到AB的距離是cm,S=cm2;(2)t為何值時,PQ⊥AB;(3)t為何值時,△BPQ是以BP為底邊的等腰三角形;(4)求S與t之間的函數(shù)關(guān)系式,并求S的最大值.
參考答案一、選擇題(每題4分,共48分)1、C【分析】逐一分析四個選項,根據(jù)二次函數(shù)圖象的開口方向以及對稱軸與y軸的位置關(guān)系,即可得出a、b的正負(fù)性,由此即可得出一次函數(shù)圖象經(jīng)過的象限,即可得出結(jié)論.【詳解】A.∵二次函數(shù)圖象開口向下,對稱軸在y軸左側(cè),∴a<0,b<0,∴一次函數(shù)圖象應(yīng)該過第二、三、四象限,故本選項錯誤;B.∵二次函數(shù)圖象開口向上,對稱軸在y軸右側(cè),∴a>0,b<0,∴一次函數(shù)圖象應(yīng)該過第一、三、四象限,故本選項錯誤;C.∵二次函數(shù)圖象開口向下,對稱軸在y軸左側(cè),∴a<0,b<0,∴一次函數(shù)圖象應(yīng)該過第二、三、四象限,故本選項正確;D.∵二次函數(shù)圖象開口向下,對稱軸在y軸左側(cè),∴a<0,b<0,∴一次函數(shù)圖象應(yīng)該過第二、三、四象限,故本選項錯誤.故選C.【點睛】本題主要考查二次函數(shù)圖象與一次函數(shù)圖象的綜合,掌握二次函數(shù)與一次函數(shù)系數(shù)與圖象的關(guān)系,是解題的關(guān)鍵.2、B【分析】根據(jù)一元二次方程的定義選出正確選項.【詳解】解:∵一元二次方程二次項系數(shù)不能為零,∴,即.故選:B.【點睛】本題考查一元二次方程的定義,解題的關(guān)鍵是掌握一元二次方程的定義.3、D【分析】由作法得CA=CB=CD=AB,根據(jù)圓周角定理得到∠ABD=90°,點C是△ABD的外心,根據(jù)三角函數(shù)的定義計算出∠D=30°,則∠A=60°,利用特殊角的三角函數(shù)值即可得到結(jié)論.【詳解】由作法得CA=CB=CD=AB,故B正確;∴點B在以AD為直徑的圓上,∴∠ABD=90°,故A正確;∴點C是△ABD的外心,在Rt△ABC中,sin∠D==,∴∠D=30°,∠A=60°,∴sinA=,故C正確;cosD=,故D錯誤,故選:D.【點睛】本題考查了解直角三角形,三角形的外接圓與外心:三角形外接圓的圓心是三角形三條邊垂直平分線的交點,叫做三角形的外心.也考查了圓周角定理和解直角三角形.4、B【解析】根據(jù)平移的性質(zhì):“平移不改變圖形的形狀和大小”來判斷即可.【詳解】解:根據(jù)“平移不改變圖形的形狀和大小”知:左圖中所示的圖案平移后得到的圖案是B項,故選B.【點睛】本題考查了平移的性質(zhì),平移的性質(zhì)是“經(jīng)過平移,對應(yīng)線段平行(或共線)且相等,對應(yīng)角相等,對應(yīng)點所連接的線段平行且相等;平移不改變圖形的形狀、大小和方向”.5、B【分析】嚴(yán)格按照配方法的一般步驟即可得到結(jié)果.【詳解】∵,∴,∴,故選B.【點睛】解答本題的關(guān)鍵是掌握配方法的一般步驟:(1)把常數(shù)項移到等號的右邊;(2)把二次項的系數(shù)化為1;(3)等式兩邊同時加上一次項系數(shù)一半的平方.選擇用配方法解一元二次方程時,最好使方程的二次項的系數(shù)為1,一次項的系數(shù)是2的倍數(shù).6、D【分析】過A作AD⊥BC,垂足為D,在直角△ABD與直角△ACD中,根據(jù)三角函數(shù)的定義求得BD和CD,再根據(jù)BC=BD+CD即可求解.【詳解】解:過A作AD⊥BC,垂足為D.在Rt△ABD中,∵∠BAD=30°,AD=120m,∴BD=AD?tan30°=120×m,在Rt△ACD中,∵∠CAD=60°,AD=120m,∴CD=AD?tan60°=120×=120m,∴BC=BD+CD=m.故選D.【點睛】本題考查解直角三角形的應(yīng)用-仰角俯角問題.7、C【解析】試題分析:根據(jù)特殊角的三角函數(shù)值可得:∠A=60°.8、D【分析】利用眾數(shù)、中位數(shù)及平均數(shù)的定義分別確定后即可得到本題的正確的選項.【詳解】解:A、書面家庭作業(yè)時間為90分鐘的有20人,最多,故眾數(shù)為90分鐘,正確;B、共40人,中位數(shù)是第20和第21人的平均數(shù),即=90,正確;C、平均時間為:×(70×4+80×7+90×20+100×8+110)=89,正確;D、隨機調(diào)查了40名同學(xué)中,每天做書面家庭作業(yè)的時間超過90分鐘的有8+1=9人,故估計全校每天做書面家庭作業(yè)的時間超過90分鐘的有9人說法錯誤,故選:D.【點睛】本題考查了眾數(shù)、中位數(shù)及平均數(shù)的定義,屬于統(tǒng)計基礎(chǔ)題,比較簡單.9、A【分析】作OE⊥AB于E,OF⊥AD于F,連接OA,如圖,利用垂徑定理和解直角三角形的知識分別在Rt△AOE和Rt△AOF中分別求出∠OAE和∠OAF的度數(shù),進而可得∠EAF的度數(shù),然后利用圓內(nèi)接四邊形的性質(zhì)即可求得結(jié)果.【詳解】解:作OE⊥AB于E,OF⊥AD于F,連接OA,如圖,則AE=AB=2,AF=AD=2,在Rt△AOE中,∵cos∠OAE=,∴∠OAE=30°,在Rt△AOF中,∵cos∠OAF=,∴∠OAF=45°,∴∠EAF=30°+45°=75°,∵四邊形ABCD為⊙O的內(nèi)接四邊形,∴∠C=180°﹣∠BAC=180°﹣75°=105°.故選:A.【點睛】本題考查了垂徑定理、解直角三角形和圓內(nèi)接四邊形的性質(zhì)等知識,屬于??碱}型,熟練掌握上述基本知識是解題的關(guān)鍵.10、C【分析】因為頂點式y(tǒng)=a(x-h)2+k,其頂點坐標(biāo)是(h,k),即可求出y=+2的頂點坐標(biāo).【詳解】解:∵二次函數(shù)y=+2是頂點式,∴頂點坐標(biāo)為:(?1,2);故選:C.【點睛】此題主要考查了利用二次函數(shù)頂點式求頂點坐標(biāo),此題型是中考中考查重點,同學(xué)們應(yīng)熟練掌握.11、C【分析】根據(jù)折疊得出∠DFE=∠A=60°,AD=DF,AE=EF,設(shè)BD=x,AD=DF=5﹣x,求出∠DFB=∠FEC,證△DBF∽△FCE,進而利用相似三角形的性質(zhì)解答即可.【詳解】解:∵△ABC是等邊三角形,∴∠A=∠B=∠C=60°,AB=BC=AC=5,∵沿DE折疊A落在BC邊上的點F上,∴△ADE≌△FDE,∴∠DFE=∠A=60°,AD=DF,AE=EF,設(shè)BD=x,AD=DF=5﹣x,CE=y(tǒng),AE=5﹣y,∵BF=2,BC=5,∴CF=3,∵∠C=60°,∠DFE=60°,∴∠EFC+∠FEC=120°,∠DFB+∠EFC=120°,∴∠DFB=∠FEC,∵∠C=∠B,∴△DBF∽△FCE,∴,即,解得:x=,即BD=,故選:C.【點睛】此題主要考查相似三角形的判定與性質(zhì),解題的關(guān)鍵是熟知折疊的性質(zhì)、相似三角形的判定定理.12、B【分析】根據(jù)題意,可得=,又由AB=4,代入即可得AC的值.【詳解】解:∵中,,,∴=.∴AC=AB==.故選B.【點睛】本題考查解直角三角形、勾股定理,解答本題的關(guān)鍵是明確題意,利用銳角三角函數(shù)和勾股定理解答.二、填空題(每題4分,共24分)13、100π【分析】圓錐側(cè)面展開圖的弧長=底面周長,利用弧長公式即可求得圓錐母線長,那么圓錐的側(cè)面積=底面周長×母線長÷1.【詳解】解:設(shè)扇形半徑為R.
∵底面周長是10π,扇形的圓心角為90°,
∴10π=×1πR,∴R=10,
∴側(cè)面積=×10π×10=100π,
故選:C.【點睛】本題利用了圓的周長公式和扇形面積公式求解.14、250π【分析】根據(jù)三視圖可得這個幾何體是一個底面直徑為10,高為10的圓柱,再根據(jù)圓柱的體積公式列式計算即可.【詳解】解:根據(jù)這個立體圖形的三視圖可得:這個幾何體是一個圓柱,底面直徑為10,高為10,
則這個立體圖形的體積為:π×52×10=250π,
故答案為:250π.【點睛】本題考查了由三視圖判斷幾何體,考查學(xué)生對三視圖掌握程度和靈活運用能力,同時也體現(xiàn)了對空間想象能力方面的考查.15、150【分析】設(shè)實際距離為x千米,根據(jù)比例尺=圖上距離:實際距離計算即可得答案.【詳解】設(shè)實際距離為x千米,5厘米=0.00005千米,∵比例尺為1:3000000,圖上距離為5cm,∴1:3000000=0.00005:x,解得:x=150(千米),故答案為:150【點睛】本題考查了比例尺的定義,能夠根據(jù)比例尺由圖上距離正確計算實際距離是解題關(guān)鍵,注意單位的換算.16、【分析】由矩形的性質(zhì)可得OC=OD,于是設(shè)DE=x,則OE=2x,OD=OC=3x,然后在Rt△OCE中,根據(jù)勾股定理即可得到關(guān)于x的方程,解方程即可求出x的值,進而可得CD的長,易證△ADC∽△CED,然后利用相似三角形的性質(zhì)即可求出結(jié)果.【詳解】解:∵四邊形ABCD是矩形,∴∠ADC=90°,BD=AC,OD=BD,OC=AC,∴OC=OD,∵EO=2DE,∴設(shè)DE=x,則OE=2x,∴OD=OC=3x,∵CE⊥BD,∴∠DEC=∠OEC=90°,在Rt△OCE中,∵OE2+CE2=OC2,∴(2x)2+52=(3x)2,解得:x=,即DE=,∴,∵∠ADE+∠CDE=90°,∠ECD+∠CDE=90°,∴∠ADE=∠ECD,又∵∠ADC=∠CED=90°,∴△ADC∽△CED,∴,即,解得:.故答案為:.【點睛】本題考查了矩形的性質(zhì)、勾股定理和相似三角形的判定與性質(zhì),屬于??碱}型,熟練掌握上述基本知識是解題的關(guān)鍵.17、25【分析】根據(jù)DE∥AB得到△CDE∽△CAB,再由CD和DA的長度得到相似比,從而確定△ABC的面積.【詳解】解:∵DE∥AB,∴△CDE∽△CAB,∵CD=2,DA=3,∴,又∵△CDE面積是4,∴,即,∴△ABC的面積為25.【點睛】本題考查了相似三角形的判定和性質(zhì),解題的關(guān)鍵是掌握相似三角形的面積之比等于相似比的平方.18、120【分析】連接AC,證明△AOC是等邊三角形,得出的度數(shù).【詳解】連接AC∵點C是的中點∴∵,∴AB平分OC∴AB是線段OC的垂直平分線∴∵∴∴△AOC是等邊三角形∴∴∴故答案為.【點睛】本題考查了等邊三角形的判定定理,從而得出目標(biāo)角的度數(shù).三、解答題(共78分)19、y=﹣10x2+1600x﹣48000;80元時,最大利潤為16000元.【解析】試題分析:(1)根據(jù)“總利潤=單件的利潤×銷售量”列出二次函數(shù)關(guān)系式即可;(2)將得到的二次函數(shù)配方后即可確定最大利潤試題解析:(1)S=y(x﹣20)=(x﹣40)(﹣10x+1)=﹣10x2+1600x﹣48000;(2)S=﹣10x2+1600x﹣48000=﹣10(x﹣80)2+16000,則當(dāng)銷售單價定為80元時,工廠每天獲得的利潤最大,最大利潤是16000元.考點:二次函數(shù)的應(yīng)用20、(20+17)cm.【分析】過點B作BM⊥CE于點M,BF⊥DA于點F,在Rt△BCM和Rt△ABF中,通過解直角三角形可求出CM、BF的長,再由CE=CM+BF+ED即可求出CE的長.【詳解】過點B作BM⊥CE于點M,BF⊥DA于點F,如圖所示.在Rt△BCM中,BC=30cm,∠CBM=30°,∴CM=BC?sin∠CBM=15cm.在Rt△ABF中,AB=40cm,∠BAD=60°,∴BF=AB?sin∠BAD=20cm.∵∠ADC=∠BMD=∠BFD=90°,∴四邊形BFDM為矩形,∴MD=BF,∴CE=CM+MD+DE=CM+BF+ED=15+20+2=20+17(cm).答:此時燈罩頂端C到桌面的高度CE是(20+17)cm.【點睛】本題考查了解直角三角形的應(yīng)用以及矩形的判定與性質(zhì),通過解直角三角形求出CM、BF的長是解題的關(guān)鍵.21、(1)-4;(2),.【分析】(1)先把特殊角的三角函數(shù)值代入,再計算乘方,再進行二次根式的運算即可;(2)用公式法解方程即可.【詳解】解:(1)原式===-4;(2)=17∴,,【點睛】本題考查了特殊角的三角函數(shù)值及二次根式的混合運算、一元二次方程的解法,牢記特殊角的三角函數(shù)值是解題的關(guān)鍵.22、【分析】根據(jù)反比例的定義,設(shè),再將代入求出k,即可求得.【詳解】由題意設(shè),將代入得,解得,∴即.【點睛】本題考查了反比例的定義,利用代入法求解未知數(shù),要注意的是,與的函數(shù)表達式指的是形式,如本題最后結(jié)果不可寫成.23、(1)見解析;(2)見解析【分析】(1)過點D作DF⊥AC于F,求出BD=DF等于半徑,得出AC是⊙D的切線;(2)根據(jù)HL先證明Rt△BDE≌Rt△DCF,再根據(jù)全等三角形對應(yīng)邊相等及切線的性質(zhì)得出AB=AF,即可得出AB+BE=AC.【詳解】證明:(1)過點D作DF⊥AC于F;∵AB為⊙D的切線,AD平分∠BAC,∴BD=DF,∴AC為⊙D的切線.(2)∵AC為⊙D的切線,∴∠DFC=∠B=90°,在Rt△BDE和Rt△FCD中;∵BD=DF,DE=DC,∴Rt△BDE≌Rt△FCD(HL),∴EB=FC.∵AB=AF,∴AB+EB=AF+FC,即AB+EB=AC.【點睛】本題考查的是切線的判定:經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線;以及及全等三角形的判斷與性質(zhì),角平分線的性質(zhì)等.24、(1);(2)存在,理由見解析;D(-4,)或(2,);(3)最大值;最小值【分析】(1)將點A、B的坐標(biāo)代入函數(shù)解析式計算即可得到;(2)點D應(yīng)在x軸的上方或下方,在下方時通過計算得△ABD的面積是△ABC面積的倍,判斷點D應(yīng)在x軸的上方,設(shè)設(shè)D(m,n),根據(jù)面積關(guān)系求出m、n的值即可得到點D的坐標(biāo);(3)設(shè)E(x,y),由點E是以點C為圓心且1為半徑的圓上的動點,用兩點間的距離公式得到點E的坐標(biāo)為E,再根據(jù)點F是AE中點表示出點F的坐標(biāo),再設(shè)設(shè)F(m,n),再利用m、n、與x的關(guān)系得到n=,通過計算整理得出,由此得出F點的軌跡是以為圓心,以為半徑的圓,再計算最大值與最小值即可.【詳解】解:(1)將點A(-3,0)、B(1,0)代入y=ax2+bx-2中,得,解得,∴(2)若D在x軸的下方,當(dāng)D為拋物線頂點(-1,)時,,△ABD的面積是△ABC面積的倍,,所以D點一定在x軸上方.設(shè)D(m,n),△ABD的面積是△ABC面積的倍,n==m=-4或m=2D(-4,)或(2,)(3)設(shè)E(x,y),∵點E是以點C為圓心且1為半徑的圓上的動點,∴,∴y=,∴E,∵F是AE的中點,∴F的坐標(biāo),設(shè)F(m,n),∴m=,n=,∴x=2m+3,∴n=,∴2n+2=,∴(2n+2)2=1-(2m+3)2,∴4(n+1)2+4()2=1,∴,∴F點的軌跡是以為圓心,以為半徑的圓,∴最大值:,最小值:最大值;最小值【點睛】此題是二次函數(shù)的綜合題,考察待定系數(shù)法解函數(shù)關(guān)系式,圖像中利用三角形面積求點的坐標(biāo),注意應(yīng)分x軸上下兩種情況,(3)還考查了兩點間的中點坐標(biāo)的求法,兩點間的距離的確定方法:兩點間的距離的平方=橫坐標(biāo)差的平方+縱坐標(biāo)差的平方.25、(1)y=﹣10x+800;(2)單價定為40元/件時,工藝廠試銷該工藝品每天獲得的利潤8000元【分析】(1)直接利用待定系數(shù)法求解可得;(2)根據(jù)“總利潤單件利潤銷售量”可得關(guān)于的一元二次方程,解之即可得.【詳解】解:(1)設(shè)y=kx+b,根據(jù)題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)療械加工廠合同
- 商業(yè)綜合體泥水施工合同
- 機電安裝工程師聘用合同樣本
- 購買家具合同協(xié)議書范本(2篇)
- 外包合同安全責(zé)任條款
- 工商租賃協(xié)議書范本
- 集體房屋租賃協(xié)議書
- 防侵權(quán)合同范例
- 土豆合同范例
- 首爾房租中介轉(zhuǎn)租合同范例
- 2023年春季高考英語試題(上海卷)
- 危險化學(xué)品目錄2023
- 土壤穩(wěn)定性評估
- Q2起重機司機實際操作技能考核作業(yè)指導(dǎo)書
- GB/T 37067-2018退化草地修復(fù)技術(shù)規(guī)范
- GB/T 23280-2009開式壓力機精度
- GB/T 19466.1-2004塑料差示掃描量熱法(DSC)第1部分:通則
- 長方體和正方體的實踐運用
- 第六課 掌握演繹推理方法課件 【備課精講精研】 高中政治統(tǒng)編版選擇性必修三邏輯與思維
- 綜合管廊工程施工技術(shù)概述課件
- 《我的心兒怦怦跳》優(yōu)秀課件
評論
0/150
提交評論