版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
{#{QQABaQIAggAAAAAAAQgCAwEKCkGQkAAAACoOwEAMIAAAyBNABAA=}#}{#{QQABaQIAggAAAAAAAQgCAwEKCkGQkAAAACoOwEAMIAAAyBNABAA=}#}{#{QQABaQIAggAAAAAAAQgCAwEKCkGQkAAAACoOwEAMIAAAyBNABAA=}#}{#{QQABaQIAggAAAAAAAQgCAwEKCkGQkAAAACoOwEAMIAAAyBNABAA=}#}昭通市2024屆高中畢業(yè)生診斷性檢測數(shù)學參考答案一、單項選擇題(本大題共8小題,每小題5分,共40分)題號答案12345678CABDCDBA【解析】1.A(,B(,所以AB(1,,故選C.52i)2i)2.zii1i,故選A.13.由題意知,向上的點為奇數(shù)共有3種可能,分別為1、、5.又因為向上的點數(shù)為5,所1以P,故選.351024.由題意知,圓心C的坐標為(0,r5,所以,圓心到直線l的距離d,10452所以,||2r2d225210,故選.D225.設圓臺的上底面半徑為r,下底面半徑為R,則2πrπ12r2πRπ,33R9,又圓臺的母線成為l271215,所以圓臺的側(cè)面積Sπ(49)15195π,故選C.π3π36.f(x)3sin2x向左平移得到g(x),所以g(x)3sin2x,因為g(x)為偶ππ2π5ππ(kZ),又因為0,所以,故選D.函數(shù),所以327.由題知△ABC為等邊三角形,所以向量CA在向量CB上的投影向量為12CBCACB1|CB|2CBCB,故選B.|CB||CB||CB|22數(shù)學參考答案·第1頁(共10頁){#{QQABaQIAggAAAAAAAQgCAwEKCkGQkAAAACoOwEAMIAAAyBNABAA=}#}8.設M(x,f(x)),則N(xf(x)),∵點N在g(x)的圖象上,∴g(x)f(x),即xxx2xxax2sin(x)xsinx,∴a.令h(x),則h(x)2x2xx42lnx1,令h(x)0,則xe,此時h(x)遞增,令h(x)0,則0xe,此時x311h(x)遞減,∴h(x)最小值為h(e),∴≥,故選A.二、多項選擇題(本大題共4小題,每小題5分,共20分.在每小題給出的選項中,有多項是符合題目要求的.全部選對的得5分,部分選對的得2分,有選錯的得0分)題號答案91012ACABACBD【解析】9.由題意知abc1,對于A選項:ec12b2341或e11;對于Baa22選項:長軸為:2a4;對于選項:∵l的方程為Cxy10,∴右焦點到的距離為ld2;對于D選項:方法1.∵l過0)且與軸平行,∴y||為通徑,b223∴|3.方法2.∵l過0)且與y軸平行,∴l(xiāng)的方程為x1,由a2x,3y|322,故選AC.xy124310.∵f(x)g(x)x2x①,∴f(x)g(x)x2x,∴f(x)g(x)x2x②,1①+②得,2g(x)2x2x,∴g(x)(2x2x),①②得,?2f(x)2x22x,x21∴f(x)x(2x2x),故選AB.21.由題Sn1a(2),令n2,Saaa,A正確;當2時,將n11223431Snn1與Sn1a兩式相減得,aan,即n1a(2),而a1,n2nnn13數(shù)學參考答案·第2頁(共10頁){#{QQABaQIAggAAAAAAAQgCAwEKCkGQkAAAACoOwEAMIAAAyBNABAA=}#}n214133n24nN所以C正確,B不正確;因Sn1aaa1*,12n14331所以D錯誤,故選AC.12.由題意知,設平面的法向量為n,平面的法向量為m(20),平面1的法向量為m(0設兩平面的交線l的方向向量為l(z,因為2x2,lm,3yz02x4y,lmlm,所以1y,l(,對于A選12lm2z3項:因為ln10,所以不垂直,故與平面不垂直,所以A錯誤,B選項正π2確;因為mm120,所以C選項錯誤;設直線l與平面所成角為0,12ln1sin,所以D選項正確,故選BD.|l||n|14三、填空題(本大題共4小題,每小題5分,共分)題號答解析】13.因為在x)3x)4x)5x)6,所以含x3的項為:(C33C34C35C36)(x),3(C33C34C53C36)35.所以含x3的項的系數(shù)是14.由題意知“訪、越、南”三個漢字的筆畫數(shù)分別為,129,又因為三個漢字的筆畫數(shù)調(diào)整順序能構(gòu)成一個等差數(shù)列,故這三個數(shù)組成的等差數(shù)列可以為6,9,12或12,9,6,因此d41x4cos2xsin2xx4cosx215.f(x)(sin2x2x)59,當且僅當sin2x2sin2x2sinx2sin2xx,即sin2x2cos2x時,f(x)有最小值9.2數(shù)學參考答案·第3頁(共10頁){#{QQABaQIAggAAAAAAAQgCAwEKCkGQkAAAACoOwEAMIAAAyBNABAA=}#}16.設半焦距為c,延長FM交于點N,由于是FPF的平分線,F(xiàn)M,所21122以△NPF是等腰三角形,所以|||,且M是NF的中點.根據(jù)雙曲線的定義可222知|PF||2a,即|NF2a,由于O是FF的中點,所以是△NFF的中位121121216線,所以||NF1a2.又雙曲線的離心率為,所以c6,b2,所以22x2y2雙曲線C的方程為C:1,根據(jù)題意知,所求的是雙曲線右支上一點到直線42yx的距離的最小值的平方.設與直線yx平行的直線方程為yxh,聯(lián)立yx,22消去y,可得x24hx2h240,所以(4h)24(2h4)0,所以2xy,42|222|h或2(舍去),所以切點到直線yx的距離為1,所以2(xx)2(yy)的最小值為1.21212四、解答題(本大題共6小題,共分.解答應寫出文字說明,證明過程或演算步驟)17分)1)由正弦定理得sinAC3sinAsinCsinBsinC,……………(1分)又sinBsin(AC)sinACcosAsin,∴3sinAsinCsinCAsinC0.………………(20CπsinC,∴3sinAA,π61sinA,2π6π5π6∴A或.………………………(4分)60Aπ,π∴A.…………………(5分)3(2)由余弦定理有4a2b2c2bcAb2cbc,………(7分)2b2c,2數(shù)學參考答案·第4頁(共10頁){#{QQABaQIAggAAAAAAAQgCAwEKCkGQkAAAACoOwEAMIAAAyBNABAA=}#}≥,………………(8分)當且僅當bc時取等號.123△ABCbcsinA≤………(10分)418分)n1n211n11(1)證明:因為,2n2n11111,……………(2分)所以又即1n11n1n1n11n11,所以數(shù)列2是以2為首項,1為公差的等差數(shù)列,…………(4分)111an11ann1n1,所以an.…………………(6分)所以nnn1n11nn1(2)解:由(1)知n,所以b(nn(n1,nn1n1…………………………(9分)所以Snb12n111112233411nn1(n1n11(n11,(n1n1故Sn1.……………………(1219分)1)零假設為H0:性別與患病相互獨立,即性別與患病無關(guān)將所給數(shù)據(jù)進行整理,得到兩種療法治療數(shù)據(jù)的列聯(lián)表,是否患病性別合計是否男女186182442363066合計24…………………………(4分)數(shù)學參考答案·第5頁(共10頁){#{QQABaQIAggAAAAAAAQgCAwEKCkGQkAAAACoOwEAMIAAAyBNABAA=}#}66(24186226.366.6350.01.根據(jù)列聯(lián)表中的數(shù)據(jù),經(jīng)計算得到36…………………………(5分)根據(jù)小概率值0.01的獨立性檢驗,沒有充分證據(jù)推斷H不成立,因此可以認為0成立,即性別與患病無關(guān).………(6分)(2)法一:f(p)C36p3p)320p3p)3f(p)60p,2p)22p,112當0p時,f(p)0,f(p)在區(qū)間,上單調(diào)遞增;…(分)92121p1時,f(p),f(p)1上單調(diào)遞減,……(分)當故在區(qū)間21212165f(p)pf在處取得最大值,最大值.……………(分)120323111法二:f(p)C36p3p)320p3p)3pP320p204245,…………………(125當且僅當p時,f(P)有最大值.…………(12分)1620分)(1)證明:法一:因為四邊形ABBA為正方形,如圖1,連接11AB,所以AB.111又因為CA平面1A1B,平面A,111所以1BCA.……(2分)圖1又因為CAA,且ABCA平面CAB,111所以1B平面1.又因為C平面1,所以1BC.………………………(6分)法二:因為CA平面1A四邊形1A,AA1為正方形,所以.……(1分)11所以以點A為原點,如圖建系.因為2,所以A(0B(0B(0C(2,11…………………………(3分)數(shù)學參考答案·第6頁(共10頁){#{QQABaQIAggAAAAAAAQgCAwEKCkGQkAAAACoOwEAMIAAAyBNABAA=}#}即AB(0BC(2,11因為ABBC0,所以ABC.111…………………………(6分)平面(2)解:因為CAABBA,四邊形1A為正方形,111所以AA.………(7分)1所以以點A為原點,如圖2建系.…(8分)設平面A的法向量為n(xyz);設平面11111的法向量為m(xyz),二面角ABCE的大小122211π圖20為,2因為2,所以A(0B(0B(02)C(20),即(0.111…………………………(9分)因為BC且2BC,111112所以1BC1.1112又因為1B31E,所以E,2,132.4即3n,n,11,,;n(11因為nn0111,,,m(132)mBC,mBC,1mBE0mBE…………………………(分)mn4277cos所以,故sin12,|m||n|77所以,二面角A1E的正弦值為.………(12分)17數(shù)學參考答案·第7頁(共10頁){#{QQABaQIAggAAAAAAAQgCAwEKCkGQkAAAACoOwEAMIAAAyBNABAA=}#}21分)p1)由題意得200,2∴01,∴拋物線的標準方程為y(2)設點M(xy,N(xy),拋物線yp2,24x.……………………(5分)24x的焦點坐標為0).1122當直線l的斜率等于0時,不符合題意;…………(6當直線l的斜率不等于0時,設過拋物線焦點的直線l的方程為:x1,24,y由xty,消去x得:y2ty40,t0,得tR,2由韋達定理得yyt,yy4.………………(8分)1212因為AM(xx(y2)(y1212xxxx1yy2(yy)412121212y214y224y214y2241yy2(yy)41212(yy)1212yy)2yy]1yyyy)4212121212411[(4t)214t4t2t4t2,40lxy10.所以當t1時,AMAN取得最小值為,此時直線的方程為…………………………(分)根據(jù)弦長公式有:|1t2|yy112(yy)24yy216168;121212|121|4(2)d22;點到直線的距離為l2211故△面積為△AMN||d82282.…………(分)2222分)(1)解:f(x)的定義域為(0,).1(x(2ax2a(x1f(x).…………(1分)xx數(shù)學參考答案·第8頁(共10頁){#{QQABaQIAggAAAAAAAQgCAwEKCkGQkAAAACoOwEAMIAAAyBNABAA=}#}①當a0時,由f(x)0得,0x1,f(x)單調(diào)遞增,由f(x)0得,x1,f(x)單調(diào)遞減,∴f(x)在區(qū)間(0上單調(diào)遞增,在區(qū)間)上單調(diào)遞減;…(2分)11②當0a時,由f(x)0得,0x1或x,22a12a12a∴f(x)在區(qū)間,上單調(diào)遞減,在區(qū)間(0,上單調(diào)遞增;…………………………(3分)1(x2③當a時,f(x)0,f(x)在(0)上單調(diào)遞增;2x…………………………(4分)11④當a時,由f(x)0得,0x或x1,22a1x1,由f(x)0得,2a12a12a∴f(x)在區(qū)間1上單調(diào)遞減,在區(qū)間,,)上單調(diào)遞增.…………………………(5分)綜上,當a0時,f(x)在區(qū)間(0上單調(diào)遞增,在區(qū)間)上單調(diào)遞減;11當0af(x),(0,2a12a21當a時,f(x)在(0)上單調(diào)遞增;2112a12a當a時,f(x)在區(qū)間1上單調(diào)遞減,在區(qū)間,,)上單調(diào)遞增.2…………………………(6分)1(2)證明:由(1)知,當且僅當a時,f(x)在(0)上單調(diào)遞增,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 稅務局2025年度環(huán)境保護與治理合同
- 2025年度出口退稅證明開具與跨境電商平臺服務合同3篇
- 2024良鄉(xiāng)校區(qū)物業(yè)管理服務合同
- 2025年度裝載機租賃與施工技術(shù)指導合同3篇
- 二零二四年圍欄產(chǎn)品研發(fā)與創(chuàng)新設計合同3篇
- 二零二五年度綠色通道不過戶二手房買賣合同2篇
- 2025年度新能源發(fā)電項目變壓器采購合同標準范本3篇
- 2024版跨國企業(yè)社會責任合規(guī)合同
- 二零二五版?zhèn)€人購房貸款擔保與房屋維修基金代繳代理合同3篇
- 二零二五版股權(quán)代持實務解析與合規(guī)操作合同
- 割接方案的要點、難點及采取的相應措施
- 2025年副護士長競聘演講稿(3篇)
- 2025至2031年中國臺式燃氣灶行業(yè)投資前景及策略咨詢研究報告
- 原發(fā)性腎病綜合征護理
- (一模)株洲市2025屆高三教學質(zhì)量統(tǒng)一檢測 英語試卷
- 第三章第一節(jié)《多變的天氣》說課稿2023-2024學年人教版地理七年級上冊
- 2025年中國電科集團春季招聘高頻重點提升(共500題)附帶答案詳解
- 2025年度建筑施工現(xiàn)場安全管理合同2篇
- 建筑垃圾回收利用標準方案
- 2024年考研英語一閱讀理解80篇解析
- 樣板間合作協(xié)議
評論
0/150
提交評論