2025屆江蘇省句容市崇明中學數學九上期末學業(yè)質量監(jiān)測模擬試題含解析_第1頁
2025屆江蘇省句容市崇明中學數學九上期末學業(yè)質量監(jiān)測模擬試題含解析_第2頁
2025屆江蘇省句容市崇明中學數學九上期末學業(yè)質量監(jiān)測模擬試題含解析_第3頁
2025屆江蘇省句容市崇明中學數學九上期末學業(yè)質量監(jiān)測模擬試題含解析_第4頁
2025屆江蘇省句容市崇明中學數學九上期末學業(yè)質量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆江蘇省句容市崇明中學數學九上期末學業(yè)質量監(jiān)測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.關于x的一元二次方程x2+ax﹣1=0的根的情況是()A.沒有實數根 B.只有一個實數根C.有兩個相等的實數根 D.有兩個不相等的實數根2.在同一坐標系中,一次函數與二次函數的圖象可能是().A. B. C. D.3.下列敘述,錯誤的是()A.對角線互相垂直且相等的平行四邊形是正方形B.對角線互相垂直平分的四邊形是菱形C.對角線互相平分的四邊形是平行四邊形D.對角線相等的四邊形是矩形4.在六張卡片上分別寫有,π,1.5,5,0,六個數,從中任意抽取一張,卡片上的數為無理數的概率是()A. B. C. D.5.如圖,△ABC中,∠B=70°,則∠BAC=30°,將△ABC繞點C順時針旋轉得△EDC.當點B的對應點D恰好落在AC上時,∠CAE的度數是()A.30° B.40° C.50° D.60°6.二次函數y=ax2+bx+c(a≠0)和正比例函數y=x的圖象如圖所示,則方程ax2+(b﹣)x+c=0(a≠0)的兩根之和()A.大于0 B.等于0 C.小于0 D.不能確定7.現有四張分別標有數字﹣2,﹣1,1,3的卡片,它們除數字外完全相同,把卡片背面朝上洗勻,從中隨機抽取一張卡片,記下數字后放回,洗勻,再隨機抽取一張卡片,則第一次抽取的卡片上的數字大于第二次抽取的卡片上的數字的概率是()A. B. C. D.8.如圖,直線與雙曲線交于、兩點,過點作軸,垂足為,連接,若,則的值是()A.2 B.4 C.-2 D.-49.如圖,在正方形紙片ABCD中,E,F分別是AD,BC的中點,沿過點B的直線折疊,使點C落在EF上,落點為N,折痕交CD邊于點M,BM與EF交于點P,再展開.則下列結論中:①CM=DM;②∠ABN=30°;③AB2=3CM2;④△PMN是等邊三角形.正確的有()A.1個 B.2個 C.3個 D.4個10.下列事件是隨機事件的是()A.在一個標準大氣壓下,水加熱到100℃會沸騰B.購買一張福利彩票就中獎C.有一名運動員奔跑的速度是50米/秒D.在一個僅裝有白球和黑球的袋中摸球,摸出紅球二、填空題(每小題3分,共24分)11.二次函數(其中m>0),下列命題:①該圖象過點(6,0);②該二次函數頂點在第三象限;③當x>3時,y隨x的增大而增大;④若當x<n時,都有y隨x的增大而減小,則.正確的序號是____________.12.A、B為⊙O上兩點,C為⊙O上一點(與A、B不重合),若∠ACB=100°,則∠AOB的度數為____°.13.如圖,一架長為米的梯子斜靠在一豎直的墻上,這時測得,如果梯子的底端外移到,則梯子頂端下移到,這時又測得,那么的長度約為______米.(,,,)14.如圖,平行四邊形中,,.以為圓心,為半徑畫弧,交于點,以為圓心,為半徑畫弧,交于點.若用扇形圍成一個圓維的側面,記這個圓錐的底面半徑為;若用扇形圍成另一個圓錐的側面,記這個圓錐的底面半徑為,則的值為______.15.如上圖,四邊形中,,點在軸上,雙曲線過點,交于點,連接.若,,則的值為______.16.函數的自變量的取值范圍是.17.Q是半徑為3的⊙O上一點,點P與圓心O的距離OP=5,則PQ長的最小值是_____.18.若3是關于x的方程x2-x+c=0的一個根,則方程的另一個根等于____.三、解答題(共66分)19.(10分)計算:|1﹣|+(2019﹣50)0﹣()﹣220.(6分)已知方程是關于的一元二次方程.(1)求證:方程總有兩個實數根;(2)若方程的兩個根之和等于兩根之積,求的值.21.(6分)如圖,二次函數y=x2+bx+c的圖象過點B(0,1)和C(4,3)兩點,與x軸交于點D、點E,過點B和點C的直線與x軸交于點A.(1)求二次函數的解析式;(2)在x軸上有一動點P,隨著點P的移動,存在點P使△PBC是直角三角形,請你求出點P的坐標;(3)若動點P從A點出發(fā),在x軸上沿x軸正方向以每秒2個單位的速度運動,同時動點Q也從A點出發(fā),以每秒a個單位的速度沿射線AC運動,是否存在以A、P、Q為頂點的三角形與△ABD相似?若存在,直接寫出a的值;若不存在,說明理由.22.(8分)如圖,在平面直角坐標系中,已知△ABC的三個頂點的坐標分別是A(﹣4,1),B(﹣1,2),C(﹣2,4).(1)將△ABC向右平移4個單位后得到△A1B1C1,請畫出△A1B1C1,并寫出點B1的坐標;(2)△A2B2C2和△A1B1C1關于原點O中心對稱,請畫出△A2B2C2,并寫出點C2的坐標;(3)連接點A和點B2,點B和點A2,得到四邊形AB2A2B,試判斷四邊形AB2A2B的形狀(無須說明理由).23.(8分)如圖所示,在平面直角坐標系中,一次函數y=kx+b(k≠0)與反比例函數y=(m≠0)的圖象交于第二、四象限A、B兩點,過點A作AD⊥x軸于D,AD=4,sin∠AOD=,且點B的坐標為(n,﹣2).(1)求一次函數與反比例函數的解析式;(2)請直接寫出滿足kx+b>的x的取值范圍;(3)E是y軸上一點,且△AOE是等腰三角形,請直接寫出所有符合條件的E點坐標.24.(8分)圖1是某小區(qū)入口實景圖,圖2是該入口抽象成的平面示意圖.已知入口BC寬3.9米,門衛(wèi)室外墻AB上的O點處裝有一盞路燈,點O與地面BC的距離為3.3米,燈臂OM長為1.2米(燈罩長度忽略不計),∠AOM=60°.(1)求點M到地面的距離;(2)某搬家公司一輛總寬2.55米,總高3.5米的貨車從該入口進入時,貨車需與護欄CD保持0.65米的安全距離,此時,貨車能否安全通過?若能,請通過計算說明;若不能,請說明理由.(參考數據:1.73,結果精確到0.01米)25.(10分)如圖,在△ABC中,D為AB邊上一點,∠B=∠ACD.(1)求證:△ABC∽△ACD;(2)如果AC=6,AD=4,求DB的長.26.(10分)如圖,AB和DE直立在地面上的兩根立柱,已知AB=5m,某一時刻AB在太陽光下的影子長BC=3m.(1)在圖中畫出此時DE在太陽光下的影子EF;(2)在測量AB影子長時,同時測量出EF=6m,計算DE的長.

參考答案一、選擇題(每小題3分,共30分)1、D【解析】∵△=>0,∴方程有兩個不相等的實數根.故選D.2、D【解析】試題分析:A.由直線與y軸的交點在y軸的負半軸上可知,<0,錯誤;B.由拋物線與y軸的交點在y軸的正半軸上可知,m>0,由直線可知,﹣m>0,錯誤;C.由拋物線y軸的交點在y軸的負半軸上可知,m<0,由直線可知,﹣m<0,錯誤;D.由拋物線y軸的交點在y軸的負半軸上可知,m<0,由直線可知,﹣m>0,正確,故選D.考點:1.二次函數的圖象;2.一次函數的圖象.3、D【分析】根據菱形的判定方法,矩形的判定方法,正方形的判定方法,平行四邊形的判定方法分別分析即可得出答案.【詳解】解:A、根據對角線互相垂直的平行四邊形可判定為菱形,再有對角線且相等可判定為正方形,此選項正確,不符合題意;B、根據菱形的判定方法可得對角線互相垂直平分的四邊形是菱形正確,此選項正確,不符合題意;C、對角線互相平分的四邊形是平行四邊形是判斷平行四邊形的重要方法之一,此選項正確,不符合題意;D、根據矩形的判定方法:對角線互相平分且相等的四邊形是矩形,因此只有對角線相等的四邊形不能判定是矩形,此選項錯誤,符合題意;選:D.【點睛】此題主要考查了菱形,矩形,正方形,平行四邊形的判定,關鍵是需要同學們準確把握矩形、菱形正方形以及平行四邊形的判定定理之間的區(qū)別與聯系.4、B【解析】無限不循環(huán)小數叫無理數,無理數通常有以下三種形式:一是開方開不盡的數,二是圓周率π,三是構造的一些不循環(huán)的數,如1.010010001……(兩個1之間0的個數一次多一個).然后用無理數的個數除以所有書的個數,即可求出從中任意抽取一張,卡片上的數為無理數的概率.【詳解】∵這組數中無理數有,共2個,∴卡片上的數為無理數的概率是.故選B.【點睛】本題考查了無理數的定義及概率的計算.5、C【解析】由三角形內角和定理可得∠ACB=80°,由旋轉的性質可得AC=CE,∠ACE=∠ACB=80°,由等腰的性質可得∠CAE=∠AEC=50°.【詳解】∵∠B=70°,∠BAC=30°∴∠ACB=80°∵將△ABC繞點C順時針旋轉得△EDC.∴AC=CE,∠ACE=∠ACB=80°∴∠CAE=∠AEC=50°故選C.【點睛】本題考查了旋轉的性質,等腰三角形的性質,熟練運用旋轉的性質是本題的關鍵.6、A【解析】試題分析:設ax2+bx+c=1(a≠1)的兩根為x1,x2,由二次函數的圖象可知x1+x2>1,a>1,設方程ax2+(b﹣)x+c=1(a≠1)的兩根為a,b再根據根與系數的關系即可得出結論.設ax2+bx+c=1(a≠1)的兩根為x1,x2,∵由二次函數的圖象可知x1+x2>1,a>1,∴﹣>1.設方程ax2+(b﹣)x+c=1(a≠1)的兩根為a,b,則a+b=﹣=﹣+,∵a>1,∴>1,∴a+b>1.考點:拋物線與x軸的交點7、B【分析】畫樹狀圖得出所有等可能結果,從找找到符合條件得結果數,在根據概率公式計算可得.【詳解】畫樹狀圖如下:由樹狀圖知共有16種等可能結果,其中第一次抽取的卡片上的數字大于第二次抽取的卡片上的數字的有6種結果,所以第一次抽取的卡片上的數字大于第二次抽取的卡片上的數字的概率為.故選B.【點睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.用到的知識點為:概率=所求情況數與總情況數之比.8、A【解析】由題意得:,又,則k的值即可求出.【詳解】設,

直線與雙曲線交于A、B兩點,

,

,,

,

,則.

又由于反比例函數位于一三象限,,故.

故選A.【點睛】本題主要考查了反比例函數中k的幾何意義,即過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為,是經??疾榈囊粋€知識點.9、C【解析】∵△BMN是由△BMC翻折得到的,∴BN=BC,又點F為BC的中點,在Rt△BNF中,sin∠BNF=,∴∠BNF=30°,∠FBN=60°,∴∠ABN=90°-∠FBN=30°,故②正確;在Rt△BCM中,∠CBM=∠FBN=30°,∴tan∠CBM=tan30°=,∴BC=CM,AB2=3CM2故③正確;∠NPM=∠BPF=90°-∠MBC=60°,∠NMP=90°-∠MBN=60°,∴△PMN是等邊三角形,故④正確;由題給條件,證不出CM=DM,故①錯誤.故正確的有②③④,共3個.故選C.10、B【解析】根據事件的類型特點及性質進行判斷.【詳解】A、是必然事件,選項錯誤;B、是隨機事件,選項錯誤;C、是不可能事件,選項錯誤;D、是不可能事件,選項錯誤.故選B.【點睛】本題考查的是隨機事件的特性,熟練掌握隨機事件的特性是本題的解題關鍵.二、填空題(每小題3分,共24分)11、①④【分析】先將函數解析式化成交點時后,可得對稱軸表達式,及與x軸交點坐標,由此可以判斷增減性.【詳解】解:,對稱軸為,①,故該函數圖象經過,故正確;②,,該函數圖象頂點不可能在第三象限,故錯誤;③,則當時,y隨著x的增大而增大,故此項錯誤;④當時,即,y隨著x的增大而減小,故此項正確.【點睛】本題考查了二次函數的性質,掌握二次函數的性質是解題的關鍵.12、160°【分析】根據圓周角定理,由∠ACB=100°,得到它所對的圓心角∠α=2∠ACB=200°,用360°-200°即可得到圓心角∠AOB.【詳解】如圖,∵∠α=2∠ACB,

而∠ACB=100°,

∴∠α=200°,

∴∠AOB=360°-200°=160°.

故答案為:160°.【點睛】本題考查了圓周角定理.在同圓或等圓中,同弧和等弧所對的圓周角相等,一條弧所對的圓周角是它所對的圓心角的一半.13、【分析】直接利用銳角三角函數關系得出,的長,進而得出答案.【詳解】由題意可得:∵,,,解得:,∵,,,解得:,則,答:的長度約為米.故答案為.【點睛】此題主要考查了解直角三角形的應用,正確得出,的長是解題關鍵.14、1【分析】設AB=a,根據平行四邊形的性質分別求出弧長EF與弧長BE,即可求出的值.【詳解】設AB=a,∵∴AD=1.5a,則DE=0.5a,∵平行四邊形中,,∴∠D=120°,∴l(xiāng)1弧長EF==l2弧長BE==∴==1故答案為:1.【點睛】此題主要考查弧長公式,解題的關鍵是熟知弧長公式及平行四邊形的性質.15、6【分析】如圖,過點F作交OA于點G,由可得OA、BF與OG的關系,設,則,結合可得點B的坐標,將點E、點F代入中即可求出k值.【詳解】解:如圖,過點F作交OA于點G,則設,則,即雙曲線過點,點化簡得,即解得,即.故答案為:6.【點睛】本題主要考查了反比例函數的圖像,靈活利用坐標表示線段長和三角形面積是解題的關鍵.16、x≠1【解析】該題考查分式方程的有關概念根據分式的分母不為0可得X-1≠0,即x≠1那么函數y=的自變量的取值范圍是x≠117、1【分析】根據點與圓的位置關系即可得到結論.【詳解】解:∵Q是半徑為3的⊙O上一點,點P與圓心O的距離OP=5,根據三角形的三邊關系,PQ≥OP-OQ(注:當O、P、Q共線時,取等號)∴PQ長的最小值=5-3=1,故答案為:1.【點睛】此題考查的是點與圓的位置關系,掌握三角形的三邊關系求最值是解決此題的關鍵.18、-1【解析】已知3是關于x的方程x1-5x+c=0的一個根,代入可得9-3+c=0,解得,c=-6;所以由原方程為x1-5x-6=0,即(x+1)(x-3)=0,解得,x=-1或x=3,即可得方程的另一個根是x=-1.三、解答題(共66分)19、-4【分析】首先計算乘方,然后從左向右依次計算,求出算式的值是多少即可.【詳解】解::|1﹣|+(2019﹣50)0﹣()﹣2=﹣1+1﹣4=﹣4【點睛】此題主要考查實數的運算,解題的關鍵是熟知實數的性質.20、(1)詳見解析;(2)1.【分析】(1)根據一元二次方程根的判別式,即可得到結論;(2)由一元二次方程根與系數的關系,得,,進而得到關于m的方程,即可求解.【詳解】(1)∵方程是關于的一元二次方程,∴,∵,∴方程總有兩個實根;(2)設方程的兩根為,,則,根據題意得:,解得:,(舍去),∴的值為1.【點睛】本題主要考查一元二次方程根的判別式以及根與系數的關系,掌握一元二次方程根的判別式以及根與系數的關系是解題的關鍵.21、(1)拋物線解析式y(tǒng)=x2–x+1;(2)點P坐標為(1,0),(3,0),(,0),(,0);(3)a=或.【分析】(1)將B、C兩點坐標代入二次函數解析式,通過聯立方程組可求得b、c的值,進而求出函數解析式;(2)設P(x,0),由△PBC是直角三角形,分∠CBP=90°與∠BPC=90°兩種情況討論,運用勾股定理可得x的值,進而得到P點坐標;(3)假設成立有△APQ∽△ADB或△APQ∽△ABD,則對應邊成比例,可求出a的值.【詳解】(1)∵二次函數y=0.5x2+bx+c的圖象過點B(0,1)和C(4,3)兩點,∴,解得,∴拋物線解析式y(tǒng)=x2–x+1.(2)設點P坐標為(x,0).∵點P(x,0),點B(0,1),點C(4,3),∴PB==,CP==,BC==2,若∠BCP=90°,則BP2=BC2+CP2.∴x2+1=20+x2–8x+25,∴x=.若∠CBP=90°,則CP2=BC2+BP2.∴x2+1+20=x2–8x+25,∴x=.若∠BPC=90°,則BC2=BP2+CP2.∴x2+1+x2–8x+25=20,∴x1=1,x2=3,綜上所述:點P坐標為(1,0),(3,0),(,0),(,0).(3)a=或.∵拋物線解析式y(tǒng)=x2–x+1與x軸交于點D,點E,∴0=x2–x+1,∴x1=1,x2=2,∴點D(1,0).∵點B(0,1),C(4,3),∴直線BC解析式y(tǒng)=x+1.當y=0時,x=–2,∴點A(–2,0).∵點A(–2,0),點B(0,1),點D(1,0),∴AD=3,AB=.設經過t秒,∴AP=2t,AQ=at,若△APQ∽△ADB,∴,即,∴a=,若△APQ∽△ABD,∴,即,∴a=.綜上所述:a=或.【點睛】此題考查了二次函數解析式的確定、直角三角形的判定以及相似三角形的性質等,難度適中.22、(1)如圖,△A1B1C1為所作;見解析;點B1的坐標為(3,2);(2)如圖,△A2B2C2為所作;見解析;點C2的坐標為(﹣2,﹣4);(3)如圖,四邊形AB2A2B為正方形.【分析】(1)利用網格特點和點平移的坐標規(guī)律寫出、、的坐標,然后描點即可得到△;(2)利用網格特點和關于原點對稱的點的坐標特征寫出、、的坐標,然后描點即可得到△;(3)證明四條相等且對角線相等可判斷四邊形為正方形.【詳解】解:(1)如圖1,△為所作;點的坐標為;(2)如圖1,△為所作;點的坐標為;(3)如圖1,四邊形為正方形,(理由:如圖2,在四邊形外側構造如圖所示直角三角形,由坐標網格的特點易證四個直角三角形全等,從而可得四邊形四邊都相等,四個角等于直角)【點睛】本題考查了作圖旋轉變換:根據旋轉的性質可知,對應角都相等都等于旋轉角,對應線段也相等,由此可以通過作相等的角,在角的邊上截取相等的線段的方法,找到對應點,順次連接得出旋轉后的圖形.23、(1)y=﹣,y=﹣x+1;(2)x<﹣3或0<x<6;(3)點P的坐標為P(0,5)或(0,﹣5)或(0,8)或(0,)【分析】(1)先利用三角函數求出OD,得出點A坐標,進而求出反比例函數解析式,進而求出點B坐標,將點A,B坐標代入直線解析式中,建立方程組,求解即可得出結論;(2)根據圖象直接得出結論;(3)設出點E坐標,進而表示出AE,OE,再分OA=OE,OA=AE,OE=AE三種情況,建立方程求解即可得出結論.【詳解】∵AD⊥x軸,∴∠ADO=90°,在Rt△AOD中,AD=4,∴sin∠AOD===,∴OA=5,根據勾股定理得,OD=3,∵點A在第二象限,∴A(﹣3,4),∵點A在反比例函數y=的圖象上,∴m=﹣3×4=﹣12,∴反比例函數解析式為y=﹣,∵點B(n,﹣2)在反比例函數y=﹣上,∴﹣2n=﹣12,∴n=6,∴B(6,﹣2),∵點A(﹣3,4),B(6,﹣2)在直線y=kx+b上,∴,∴,∴一次函數的解析式為y=﹣x+1;(2)由圖象知,滿足kx+b>的x的取值范圍為x<﹣3或0<x<6;(3)設點E的坐標為(0,a),∵A(﹣3,4),O(0,0),∴OE=|a|,OA=5,AE=,∵△AOE是等腰三角形,∴①當OA=OE時,|a|=5,∴a=±5,∴P(0,5)或(0,﹣5),②當OA=AE時,5=,∴a=8或a=0(舍),∴P(0,8),③當OE=AE時,|a|=,∴a=,∴P(0,),即:滿足條件的點P的坐標為P(0,5)或(0,﹣5)或(0,8)或(0,).【點睛】此題是反比例函數綜合題,主要考查了待定系數法,銳角三角函數,等腰三角形的性質,用方程的思想解決問題是解本題的關鍵.24、(1)3.9米;(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論