2022-2023學(xué)年河南省漯河召陵區(qū)七校聯(lián)考九年級數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第1頁
2022-2023學(xué)年河南省漯河召陵區(qū)七校聯(lián)考九年級數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第2頁
2022-2023學(xué)年河南省漯河召陵區(qū)七校聯(lián)考九年級數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第3頁
2022-2023學(xué)年河南省漯河召陵區(qū)七校聯(lián)考九年級數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第4頁
2022-2023學(xué)年河南省漯河召陵區(qū)七校聯(lián)考九年級數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.如圖,在平面直角坐標系中,點M的坐標為M(,2),那么cosα的值是()A. B. C. D.2.如圖,點在反比例函數(shù)的圖象上,過點的直線與軸,軸分別交于點,,且,的面積為,則的值為()A. B. C. D.3.如圖,在等腰Rt△ABC中,∠BAC=90°,BC=2,點P是△ABC內(nèi)部的一個動點,且滿足∠PBC=∠PCA,則線段AP長的最小值為()A.0.5 B.﹣1 C.2﹣ D.4.一個盒子里裝有若干個紅球和白球,每個球除顏色以外都相同.5位同學(xué)進行摸球游戲,每位同學(xué)摸10次(摸出1球后放回,搖勻后再繼續(xù)摸),其中摸到紅球數(shù)依次為8,5,9,7,6,則估計盒中紅球和白球的個數(shù)是()A.紅球比白球多 B.白球比紅球多 C.紅球,白球一樣多 D.無法估計5.如圖,菱形中,過頂點作交對角線于點,已知,則的大小為()A. B. C. D.6.如圖,已知小明、小穎之間的距離為3.6m,他們在同一盞路燈下的影長分別為1.8m,1.6m,已知小明、小穎的身高分別為1.8m,1.6m,則路燈的高為()A.3.4m B.3.5m C.3.6m D.3.7m7.已知,下列變形錯誤的是()A. B. C. D.8.若關(guān)于的方程有兩個不相等的實數(shù)根,則的取值范圍是()A. B. C. D.9.如圖,在平面直角坐標系xOy中,正方形ABCD的頂點D在y軸上且A(﹣3,0),B(2,b),則正方形ABCD的面積是()A.20 B.16 C.34 D.2510.如圖,已知⊙O的半徑為13,弦AB長為24,則點O到AB的距離是()A.6 B.5 C.4 D.3二、填空題(每小題3分,共24分)11.某劇場共有個座位,已知每行的座位數(shù)都相同,且每行的座位數(shù)比總行數(shù)少,求每行的座位數(shù).如果設(shè)每行有個座位,根據(jù)題意可列方程為_____________.12.函數(shù)y=中的自變量的取值范圍是____________.13.如圖,四邊形ABCD內(nèi)接于⊙O,F(xiàn)是上一點,且,連接CF并延長交AD的延長線于點E,連接AC.若∠ABC=105°,∠BAC=25°,則∠E的度數(shù)為______度.14.如圖,是某公園一圓形噴水池,在池中心豎直安裝一根水管OA=1.25m,A處是噴頭,水流在各個方向沿形狀相同的拋物線落下,水落地后形成一個圓,圓心為O,直徑為線段CB.建立如圖所示的平面直角坐標系,若水流路線達到最高處時,到x軸的距離為2.25m,到y(tǒng)軸的距離為1m,則水落地后形成的圓的直徑CB=_____m.15.我國經(jīng)典數(shù)學(xué)著作《九章算術(shù)》中有這樣一道名題,就是“引葭赴岸”問題,(如圖)題目是:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊,問水深,葭長各幾何?”題意是:有一正方形池塘,邊長為一丈,有棵蘆葦長在它的正中央,高出水面部分有一尺長,把蘆葦拉向岸邊,恰好碰到岸沿,問水深和蘆葦長各是多少?(小知識:1丈=10尺)如果設(shè)水深為x尺,則蘆葦長用含x的代數(shù)式可表示為尺,根據(jù)題意列方程為.16.四邊形為的內(nèi)接四邊形,為的直徑,為延長線上一點,為的切線,若,則_________.若,則__________.17.如圖,邊長為4的正六邊形內(nèi)接于,則的內(nèi)接正三角形的邊長為______________.18.若函數(shù)是二次函數(shù),則的值為__________.三、解答題(共66分)19.(10分)如圖,在平面直角坐標系中,有一個,頂點的坐標分別是.將繞原點順時針旋轉(zhuǎn)90°得到,請在平面直角坐標系中作出,并寫出的頂點坐標.20.(6分)化簡:,并從中取一個合適的整數(shù)代入求值.21.(6分)平面直角坐標系中有點和某一函數(shù)圖象,過點作軸的垂線,交圖象于點,設(shè)點,的縱坐標分別為,.如果,那么稱點為圖象的上位點;如果,那么稱點為圖象的圖上點;如果,那么稱點為圖象的下位點.(1)已知拋物線.①在點A(-1,0),B(0,-2),C(2,3)中,是拋物線的上位點的是;②如果點是直線的圖上點,且為拋物線的上位點,求點的橫坐標的取值范圍;(2)將直線在直線下方的部分沿直線翻折,直線的其余部分保持不變,得到一個新的圖象,記作圖象.⊙的圓心在軸上,半徑為.如果在圖象和⊙上分別存在點和點F,使得線段EF上同時存在圖象的上位點,圖上點和下位點,求圓心的橫坐標的取值范圍.22.(8分)已知,在平行四邊形OABC中,OA=5,AB=4,∠OCA=90°,動點P從O點出發(fā)沿射線OA方向以每秒2個單位的速度移動,同時動點Q從A點出發(fā)沿射線AB方向以每秒1個單位的速度移動.設(shè)移動的時間為t秒.(1)求直線AC的解析式;(2)試求出當t為何值時,△OAC與△PAQ相似.23.(8分)元旦游園活動中,小文,小美,小紅三位同學(xué)正在搬各自的椅子準備進行“搶凳子”游戲,看見李老師來了,小文立即邀請李老師參加,游戲規(guī)則如下:將三位同學(xué)的椅子背靠背放在教室中央,四人圍著椅子繞圈行走,在行走過程中裁判員隨機喊停,聽到“停”后四人迅速搶坐在一張椅子上,沒有搶坐到椅子的人淘汰,不能進入下一輪游戲.(1)下列事件是必然事件的是.A.李老師被淘汰B.小文搶坐到自己帶來的椅子C.小紅搶坐到小亮帶來的椅子D.有兩位同學(xué)可以進入下一輪游戲(2)如果李老師沒有搶坐到任何一張椅子,三位同學(xué)都搶坐到了椅子但都沒有搶坐到自己帶來的椅子(記為事件),求出事件的概率,請用樹狀圖法或列表法加以說明.24.(8分)如圖1,中,是的高.(1)求證:.(2)與相似嗎?為什么?(3)如圖2,設(shè)的中點為的中點為,連接,求的長.25.(10分)如圖,在矩形ABCD中,AB=6,BC=4,動點Q在邊AB上,連接CQ,將△BQC沿CQ所在的直線對折得到△CQN,延長QN交直線CD于點M.(1)求證:MC=MQ(2)當BQ=1時,求DM的長;(3)過點D作DE⊥CQ,垂足為點E,直線QN與直線DE交于點F,且,求BQ的長.26.(10分)如圖,在四邊形中,將繞點順時針旋轉(zhuǎn)一定角度后,點的對應(yīng)點恰好與點重合,得到.(1)求證:;(2)若,試求四邊形的對角線的長.

參考答案一、選擇題(每小題3分,共30分)1、D【分析】如圖,作MH⊥x軸于H.利用勾股定理求出OM,即可解決問題.【詳解】解:如圖,作MH⊥x軸于H.∵M(,2),∴OH=,MH=2,∴OM==3,∴cosα=,故選:D.【點睛】本題考查解直角三角形的應(yīng)用,勾股定理等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考常考題型.2、D【分析】過點C作CD⊥x軸交于點D,連接OC,則CD∥OB,得AO=OD,CD=2OB,進而得的面積為4,即可得到答案.【詳解】過點C作CD⊥x軸交于點D,連接OC,則CD∥OB,∵,∴AO=OD,∴OB是?ADC的中位線,∴CD=2OB,∵的面積為,∴的面積為4,∵點在反比例函數(shù)的圖象上,∴k=2×4=8,故選D.【點睛】本題主要考查反比例函數(shù)比例系數(shù)k的幾何意義,添加輔助線,求出的面積,是解題的關(guān)鍵.3、C【分析】先計算出∠PBC+∠PCB=45°,則∠BPC=135°,利用圓周角定理可判斷點P在以BC為弦的⊙O上,如圖,連接OA交于P′,作所對的圓周角∠BQC,利用圓周角定理計算出∠BOC=90°,從而得到△OBC為等腰直角三角形,四邊形ABOC為正方形,所以O(shè)A=BC=2,OB=,根據(jù)三角形三邊關(guān)系得到AP≥OA﹣OP(當且僅當A、P、O共線時取等號,即P點在P′位置),于是得到AP的最小值.【詳解】解:∵△ABC為等腰直角三角形,∴∠ACB=45°,即∠PCB+∠PCA=45°,∵∠PBC=∠PCA,∴∠PBC+∠PCB=45°,∴∠BPC=135°,∴點P在以BC為弦的⊙O上,如圖,連接OA交于P′,作所對的圓周角∠BQC,則∠BCQ=180°﹣∠BPC=45°,∴∠BOC=2∠BQC=90°,∴△OBC為等腰直角三角形,∴四邊形ABOC為正方形,∴OA=BC=2,∴OB=BC=,∵AP≥OA﹣OP(當且僅當A、P、O共線時取等號,即P點在P′位置),∴AP的最小值為2﹣.故選:C.【點睛】本題考查了圓周角定理及等腰直角三角形的性質(zhì).圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.推論:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.4、A【解析】根據(jù)題意可得5位同學(xué)摸到紅球的頻率為,由此可得盒子里的紅球比白球多.故選A.5、D【分析】先說明ABD=∠ADC=∠CBD,然后再利用三角形內(nèi)角和180°求出即可∠CBD度數(shù),最后再用直角三角形的內(nèi)角和定理解答即可.【詳解】解:∵菱形ABCD∴AB=AD∴∠ABD=∠ADC∴∠ABD=∠CBD又∵∴∠CBD=∠BDC=∠ABD=∠ADB=(180°-134°)=23°∴=90°-23°=67°故答案為D.【點睛】本題主要考查了菱形的性質(zhì),解題的關(guān)鍵是掌握菱形的對角線平分每一組對角和三角形內(nèi)角和定理.6、B【分析】根據(jù)CD∥AB∥MN,得到△ABE∽△CDE,△ABF∽△MNF,根據(jù)相似三角形的性質(zhì)可知,,即可得到結(jié)論.【詳解】解:如圖,∵CD∥AB∥MN,∴△ABE∽△CDE,△ABF∽△MNF,∴,即,,解得:AB=3.5m,故選:B.【點睛】本題考查的是相似三角形的應(yīng)用,相似三角形的判定和性質(zhì),熟練掌握相似三角形的判定和性質(zhì)是解題的關(guān)鍵.7、B【解析】根據(jù)比例式的性質(zhì),即可得到答案.【詳解】∵?,?,?,?,∴變形錯誤的是選項B.故選B.【點睛】本題主要考查比例式的性質(zhì),掌握比例式的內(nèi)項之積等于外項之積,是解題的關(guān)鍵.8、D【分析】利用一元二次方程的根的判別式列出不等式即可求出k的取值范圍.【詳解】解:由題意得=(2k+1)2-4(k2-1)=4k+5>0解得:k>-故選D【點睛】此題主要考查了一元二次方程的根的判別式,熟記根的判別式是解題的關(guān)鍵.9、C【分析】作BM⊥x軸于M.只要證明△DAO≌△ABM,推出OA=BM,AM=OD,由A(﹣3,0),B(2,b),推出OA=3,OM=2,推出OD=AM=5,再利用勾股定理求出AD即可解決問題.【詳解】解:作軸于.四邊形是正方形,,,,,,,在和中,,,,,,,,,,正方形的面積,故選:.【點睛】本題考查正方形的性質(zhì)、坐標與圖形的性質(zhì)、全等三角形的判定和性質(zhì)、勾股定理等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線構(gòu)造全等三角形解決問題,屬于中考常考題型.10、B【解析】過點O作OC⊥AB,垂足為C,則有AC=AB=×24=12,在Rt△AOC中,∠ACO=90°,AO=13,∴OC==5,即點O到AB的距離是5.二、填空題(每小題3分,共24分)11、x(x+12)=1【分析】設(shè)每行有個座位,根據(jù)等量關(guān)系,列出一元二次方程,即可.【詳解】設(shè)每行有個座位,則總行數(shù)為(x+12)行,根據(jù)題意,得:x(x+12)=1,故答案是:x(x+12)=1.【點睛】本題主要考查一元二次方程的實際應(yīng)用,找出等量關(guān)系,列出方程,是解題的關(guān)鍵.12、x≠1【分析】根據(jù)分母不等于0列式計算即可得解.【詳解】根據(jù)題意得,x-1≠0,解得:x≠1.故答案為x≠1.13、1【分析】根據(jù)圓內(nèi)接四邊形的性質(zhì)求出∠ADC的度數(shù),由圓周角定理得出∠DCE的度數(shù),根據(jù)三角形外角的性質(zhì)即可得出結(jié)論.【詳解】∵四邊形ABCD內(nèi)接于⊙O,∠ABC=105°,∴∠ADC=180°﹣∠ABC=180°﹣105°=75°,∵,∠BAC=25°,∴∠DCE=∠BAC=25°,∴∠E=∠ADC﹣∠DCE=75°﹣25°=1°,故答案為:1.【點睛】本題考查了圓內(nèi)接四邊形的問題,掌握圓內(nèi)接四邊形的性質(zhì)、圓周角定理、三角形外角的性質(zhì)是解題的關(guān)鍵.14、1【分析】設(shè)y軸右側(cè)的拋物線解析式為:y=a(x?1)2+2.21,將A(0,1.21)代入,求得a,從而可得拋物線的解析式,再令函數(shù)值為0,解方程可得點B坐標,從而可得CB的長.【詳解】解:設(shè)y軸右側(cè)的拋物線解析式為:y=a(x﹣1)2+2.21∵點A(0,1.21)在拋物線上∴1.21=a(0﹣1)2+2.21解得:a=﹣1∴拋物線的解析式為:y=﹣(x﹣1)2+2.21令y=0得:0=﹣(x﹣1)2+2.21解得:x=2.1或x=﹣0.1(舍去)∴點B坐標為(﹣2.1,0)∴OB=OC=2.1∴CB=1故答案為:1.【點睛】本題考查了二次函數(shù)在實際問題中的應(yīng)用,明確二次函數(shù)的相關(guān)性質(zhì)及正確的解方程,是解題的關(guān)鍵.15、(x+1);.【解析】試題分析:設(shè)水深為x尺,則蘆葦長用含x的代數(shù)式可表示為(x+1)尺,根據(jù)題意列方程為.故答案為(x+1),.考點:由實際問題抽象出一元二次方程;勾股定理的應(yīng)用.16、【分析】連接OC,AC、過點A作AF⊥CE于點F,根據(jù)相似三角形的性質(zhì)與判定,以及勾股定理即可求出答案.【詳解】解:連接OC,

∵CE是⊙O的切線,

∴∠OCE=90°,

∵∠E=20°,

∴∠COD=70°,

∵OC=OD,∴∠ABC=180°-55°=125°,

連接AC,過點A做AF⊥CE交CE于點F,

設(shè)OC=OD=r,

∴OE=8+r,

在Rt△OEC中,

由勾股定理可知:(8+r)2=r2+122,

∴r=5,

∵OC∥AF

∴△OCE∽△AEF,故答案為:【點睛】本題考查圓的綜合問題,涉及勾股定理,相似三角形的性質(zhì)與判定,切線的性質(zhì)等知識,需要學(xué)生靈活運用所學(xué)知識.17、【分析】解:如圖,連接OA、OB,易得△AOB是等邊三角形,從而可得OA=AB=4,再過點O作OM⊥AE于點M,則∠OAM=30°,AM=ME,然后解直角△AOM求得AM的長,進而可得答案.【詳解】解:如圖,連接OA、OB,則∠AOB=60°,OA=OB,∴△AOB是等邊三角形,∴OA=AB=4,過點O作OM⊥AE于點M,則∠OAM=30°,AM=ME,在直角△AOM中,,∴AE=2AM=.故答案為:.【點睛】本題考查了正多邊形和圓,作輔助線構(gòu)造直角三角形、利用解直角三角形的知識求解是解題關(guān)鍵.18、-1【分析】直接利用二次函數(shù)的定義分析得出答案.【詳解】解:∵函數(shù)是二次函數(shù),

∴m1+m=1,且m-1≠0,

∴m=?1.

故答案為-1.【點睛】此題主要考查了二次函數(shù)的定義,正確把握二次函數(shù)的次數(shù)與系數(shù)的值是解題關(guān)鍵.三、解答題(共66分)19、作圖見解析,【分析】連接OA、OB、OC,以O(shè)為圓心,分別以O(shè)A、OB、OC為半徑,順時針旋轉(zhuǎn)90°,分別得到OA1、OB1、OC1,連接A1B1、A1C1、B1C1即可;然后過點A作AD⊥x軸于D,過點A1作A1E⊥x軸于E,利用AAS證出△OAD≌△A1OE,然后根據(jù)全等三角形的性質(zhì)即可求出點A1的坐標,同理即可求出點B1、C1的坐標.【詳解】解:連接OA、OB、OC,以O(shè)為圓心,分別以O(shè)A、OB、OC為半徑,順時針旋轉(zhuǎn)90°,分別得到OA1、OB1、OC1,連接A1B1、A1C1、B1C1,如下圖所示,即為所求;過點A作AD⊥x軸于D,過點A1作A1E⊥x軸于E∵根據(jù)旋轉(zhuǎn)的性質(zhì)可得:OA=A1O,∠AOA1=90°∴∠AOD+∠OAD=90°,∠AOD+∠A1OE=90°∴∠OAD=∠A1OE在△OAD和△A1OE中∴△OAD≌△A1OE∴AD=OE,OD=A1E∵點A的坐標為∴AD=OE=4,OD=A1E=2∴點A1的坐標為(4,2)同理可求點B1的坐標為(1,5),點C1的坐標為(1,1)【點睛】此題考查的是圖形與坐標的變化:旋轉(zhuǎn)和全等三角形的判定及性質(zhì),掌握旋轉(zhuǎn)圖形的畫法和構(gòu)造全等三角形是解決此題的關(guān)鍵.20、-x-1,-1.【分析】先將原分式化簡,然后根據(jù)分式有意義的條件代入適當?shù)闹导纯?【詳解】解:原式當時(不能?。?或1,否則無意義)原式.【點睛】此題考查的是分式的化簡求值題,掌握分式的運算法則和分式有意義的條件是解決此題的關(guān)鍵.21、(1)①A,C.②;(2)或.【分析】(1)①分別將A,B,C三個點的橫坐標代入拋物線的解析式中,然后比較求出的函數(shù)值與各自點的縱坐標,最后依據(jù)上位點的定義判斷即可得出答案;②找到直線與拋物線的兩個交點,即可確定點的橫坐標的取值范圍(2)當圓與兩條直線的反向延長線相切時,為臨界點,臨界點的兩邊都滿足要求,數(shù)形結(jié)合求出臨界點時圓心的橫坐標,即可得出答案.【詳解】解:(1)①當時,,所以A點是拋物線的上位點;當時,,所以B點不是拋物線的上位點;當時,,所以C點是拋物線的上位點;故答案為,.②∵點是直線的圖上點,∴點在上.又∵點是的上位點,∴點在與的交點,之間運動.∵∴∴點(,),(,).∴.(2)如圖,當圓與兩條直線的反向延長線相切時,為臨界點,臨界點的兩邊都滿足要求.將沿直線翻折后的直線的解析式為當時,,∴A(-3,0),OA=3當時,∴C(0,3),OC=3∴∵∴∴∵A(-3,0)∴同理可得∴線段EF上同時存在圖象的上位點,圖上點和下位點,圓心的橫坐標的取值范圍為或.【點睛】本題主要考查二次函數(shù)與一次函數(shù)的綜合,掌握上位點,圖上點和下位點的概念是解題的關(guān)鍵.22、(1);(2)當t=或時,△OAC與△APQ相似.【分析】(1)要求直線AC的解析式,需要求出點A、點C的坐標,可以利用等積法求得C點的縱坐標,利用勾股定理求得橫坐標,利用待定系數(shù)法求得直線的解析式;(2)對于相似要分情況進行討論,根據(jù)對應(yīng)線段成比例可求得t的數(shù)值.【詳解】解:(1)過點C作CE⊥OA,垂足為E,在Rt△OCA中,AC==3,∴5×CE=3×4,∴CE=,在Rt△OCE中,OE==,∴C(,),A(5,0),設(shè)AC的解析式為y=kx+b,則,解得:,∴;(2)當0≤t≤2.5時,P在OA上,因為∠OAQ≠90°,故此時△OAC與△PAQ不可能相似.當t>2.5時,①若∠APQ=90°,則△APQ∽△OCA,故==,∴=,∴t=,∵t>2.5,∴t=符合條件.②若∠AQP=90°,則△APQ∽△OAC,故==,∴=,∴t=,∵t>2.5,∴t=符合條件.綜上可知,當t=或時,△OAC與△APQ相似.【點睛】本題考查了求一次函數(shù)的解析式、相似三角形的判定與性質(zhì)、平行四邊形的性質(zhì),關(guān)于動點的問題要注意對問題進行分類討論.23、(1)D;(2)圖見解析,【分析】(1)根據(jù)隨機事件、必然事件和不可能事件的定義求解可得;(2)根據(jù)題意畫出樹狀圖列出所有等可能結(jié)果,再根據(jù)概率公式求解可得.【詳解】解:(1)、王老師被淘汰是隨機事件;、小明搶坐到自己帶來的椅子是隨機事件;、小紅搶坐到小亮帶來的椅子是隨機事件;、共有3張椅子,四人中只有1位老師,所以一定有2位同學(xué)能進入下一輪游戲;故是必然事件.故選:;(2)解:設(shè)小文,小美,小紅三位同學(xué)帶來的椅子依次排列為a、b、c,畫樹狀圖如下由樹狀圖可知,所有等可能結(jié)果共有6種,其中第4種、第5種結(jié)果符合題意,∴P(A)=.【點睛】此題考查了概率和用樹狀圖法與列表法求概率.樹狀圖法與列表法可以不重不漏的表示出所有等可能的結(jié)果.用到的知識點為:概率所求情況數(shù)與總情況數(shù)之比.24、(1)見解析;(2),理由見解析;(3)【解析】(1)由題意,BD、CE是高,則∠ADB=∠AEC=90°,是公共角,即可得出△ABD∽△ACE;(2)由△ABD∽△ACE可推出,又,根據(jù)相似三角形的判定定理即可證得;(3)連接、,根據(jù)等腰三角形的性質(zhì)可得,,根據(jù)三角函數(shù)可得,進而可求得,由勾股定理即可求出FM的長.【詳解】(1)、是的高。(2),即(3)連接、,∵BD是△ABC的高,M為BC的中點,∴在Rt△CBD中,,同理可得,∴,∵F是DE的中點,∴,由得,∴,∵DE=12,∴,∵,且,∴.【點睛】本題主要考查了相似三角形的判定和性質(zhì),直角三角形斜邊上中線的性質(zhì)以及等腰三角形的判定與性質(zhì).25、(1)見解析;(2)2.1;(3)或2【分析】(1)由矩形的性質(zhì)得出∠B=90°,AB=CD=6,CD∥AB,得出∠MCQ=∠CQB,由折疊的性質(zhì)得出△CBQ≌△CNQ,求出BC=NC=4,NQ=BQ=1,∠CNQ=∠B=90°,∠CQN=∠CQB,得出∠CNM=90°,∠MCQ=∠CQN,證出MC=MQ.

(2)設(shè)DM=x,則MQ=MC=6+x,MN=1+x,在Rt△CNM中,由勾股定理得出方程,解方程即可.

(3)分兩種情況:①當點M在CD延長線上時,由(1)得:∠MCQ=∠CQM,證出∠FDM=∠F,得出MD=MF,過M作MH⊥DF于H,則DF=2DH,證明△MHD∽△CED,得出,求出MD=CD=1,MC=M

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論