版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.若一次函數(shù)的圖像經(jīng)過第一、二、四象限,則下列不等式中總是成立的是()A. B. C. D.2.如圖,在平面直角坐標(biāo)系中,直線與軸、軸分別交于點、,點是軸正半軸上的一點,當(dāng)時,則點的縱坐標(biāo)是()A.2 B. C. D.3.如圖,,相交于點,.若,,則與的面積之比為()A. B. C. D.4.如圖,矩形的面積為4,反比例函數(shù)()的圖象的一支經(jīng)過矩形對角線的交點,則該反比例函數(shù)的解析式是()A. B. C. D.5.將拋物線向上平移2個單位長度,再向右平移3個單位長度后,得到的拋物線解析式為()A. B.C. D.6.用求根公式計算方程的根,公式中b的值為()A.3 B.-3 C.2 D.7.如圖,直線y=x+3與x、y軸分別交于A、B兩點,則cos∠BAO的值是()A. B. C. D.8.如圖,在Rt△ABC中,CD是斜邊AB上的中線,已知AC=3,CD=2,則cosA的值為()A. B. C. D.9.在下列四個圖案中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.10.若雙曲線經(jīng)過第二、四象限,則直線經(jīng)過的象限是()A.第一、二、三象限 B.第一、二、四象限C.第一、三、四象限 D.第二、三、四象限二、填空題(每小題3分,共24分)11.大潤發(fā)超市對去年全年每月銷售總量進(jìn)行統(tǒng)計,為了更清楚地看出銷售總量的變化趨勢,應(yīng)選用________統(tǒng)計圖來描述數(shù)據(jù).12.二次函數(shù)y=3(x+2)的頂點坐標(biāo)______.13.如圖(1),在矩形ABCD中,將矩形折疊,使點B落在邊AD上,這時折痕與邊AD和BC分別交于點E、點F.然后再展開鋪平,以B、E、F為頂點的△BEF稱為矩形ABCD的“折痕三角形”.如圖(2),在矩形ABCD中,AB=2,BC=4,當(dāng)“折痕△BEF”面積最大時,點E的坐標(biāo)為_________________________.14.如圖,在矩形ABCD中,∠ABC的角平分線BE與AD交于點E,∠BED的角平分線EF與DC交于點F,若AB=8,DF=3FC,則BC=__________.15.如圖,Rt△ABC中,∠A=90°,CD平分∠ACB交AB于點D,O是BC上一點,經(jīng)過C、D兩點的⊙O分別交AC、BC于點E、F,AD=,∠ADC=60°,則劣弧的長為_____.16.如圖,在平面直角坐標(biāo)系中,,則經(jīng)過三點的圓弧所在圓的圓心的坐標(biāo)為__________;點坐標(biāo)為,連接,直線與的位置關(guān)系是___________.17.公元前3世紀(jì),古希臘科學(xué)家阿基米德發(fā)現(xiàn)了杠桿平衡,后來人們把它歸納為“杠桿原理”,即:阻力×阻力臂=動力×動力臂.小偉欲用撬棍撬動一塊石頭,已知阻力和阻力臂分別是和,則動力(單位:)關(guān)于動力臂(單位:)的函數(shù)解析式為______.18.已知△ABC與△DEF相似,且△ABC與△DEF的相似比為2:3,若△DEF的面積為36,則△ABC的面積等于________.三、解答題(共66分)19.(10分)如圖,已知點在反比例函數(shù)的圖像上.(1)求a的值;(2)如果直線y=x+b也經(jīng)過點A,且與x軸交于點C,連接AO,求的面積.20.(6分)已知矩形的周長為1.(1)當(dāng)該矩形的面積為200時,求它的邊長;(2)請表示出這個矩形的面積與其一邊長的關(guān)系,并求出當(dāng)矩形面積取得最大值時,矩形的邊長.21.(6分)已知的半徑長為,弦與弦平行,,,求間的距離.22.(8分)如圖,在平面直角坐標(biāo)系中,點A的坐標(biāo)為(m,m),點B的坐標(biāo)為(n,﹣n),拋物線經(jīng)過A、O、B三點,連接OA、OB、AB,線段AB交y軸于點C,已知實數(shù)m、n(m<n)分別是方程x2﹣2x﹣3=0的兩根.(1)求拋物線的解析式;(2)若點P為線段OB上的一個動點(不與點O、B重合),直線PC與拋物線交于D、E兩點(點D在y軸右側(cè)),連接OD、BD①當(dāng)△OPC為等腰三角形時,求點P的坐標(biāo);②求△BOD面積的最大值,并寫出此時點D的坐標(biāo).23.(8分)如圖,在△ABC中,AB=AC=10,∠B=30°,O是線段AB上的一個動點,以O(shè)為圓心,OB為半徑作⊙O交BC于點D,過點D作直線AC的垂線,垂足為E.(1)求證:DE是⊙O的切線;(2)設(shè)OB=x,求∠ODE的內(nèi)部與△ABC重合部分的面積y的最大值.24.(8分)某公司經(jīng)銷一種成本為10元的產(chǎn)品,經(jīng)市場調(diào)查發(fā)現(xiàn),在一段時間內(nèi),銷售量(件)與銷售單價(元/件)的關(guān)系如下表:15202530550500450400設(shè)這種產(chǎn)品在這段時間內(nèi)的銷售利潤為(元),解答下列問題:(1)如是的一次函數(shù),求與的函數(shù)關(guān)系式;(2)求銷售利潤與銷售單價之間的函數(shù)關(guān)系式;(3)求當(dāng)為何值時,的值最大?最大是多少?25.(10分)已知y與x成反比例,則其函數(shù)圖象與直線相交于一點A.(1)求反比例函數(shù)的表達(dá)式;(2)直接寫出反比例函數(shù)圖象與直線y=kx的另一個交點坐標(biāo);(3)寫出反比例函數(shù)值不小于正比例函數(shù)值時的x的取值范圍.26.(10分)如圖,坡AB的坡比為1:2.4,坡長AB=130米,坡AB的高為BT.在坡AB的正面有一棟建筑物CH,點H、A、T在同一條地平線MN上.(1)試問坡AB的高BT為多少米?(2)若某人在坡AB的坡腳A處和中點D處,觀測到建筑物頂部C處的仰角分別為60°和30°,試求建筑物的高度CH.(精確到米,≈1.73,≈1.41)
參考答案一、選擇題(每小題3分,共30分)1、C【分析】首先判斷a、b的符號,再一一判斷即可解決問題.【詳解】∵一次函數(shù)y=ax+b的圖象經(jīng)過第一、二、四象限,∴a<0,b>0,故A錯誤;,故B錯誤;a2+b>0,故C正確,a+b不一定大于0,故D錯誤.故選:C.【點睛】本題考查一次函數(shù)與不等式,解題的關(guān)鍵是學(xué)會根據(jù)函數(shù)圖象的位置,確定a、b的符號,屬于中考??碱}型.2、D【分析】首先過點B作BD⊥AC于點D,設(shè)BC=a,根據(jù)直線解析式得到點A、B坐標(biāo),從而求出OA、OB的長,易證△BCD≌△ACO,再根據(jù)相似三角形的對應(yīng)邊成比例得出比例式,即可解答.【詳解】解:過點B作BD⊥AC于點D,設(shè)BC=a,∵直線與軸、軸分別交于點、,∴A(-2,0),B(0,1),即OA=2,OB=1,AC=,∵,∴AB平分∠CAB,又∵BO⊥AO,BD⊥AC,∴BO=BD=1,∵∠BCD=∠ACO,∠CDB=∠COA=90°,∴△BCD≌△ACO,∴,即a:=1:2解得:a1=,a2=-1(舍去),∴OC=OB+BC=+1=,所以點C的縱坐標(biāo)是.故選:D.【點睛】本題考查相似三角形的判定與性質(zhì)、角平分線的性質(zhì)的綜合運(yùn)用,解題關(guān)鍵是恰當(dāng)作輔助線利用角平分線的性質(zhì).3、B【分析】先證明兩三角形相似,再利用面積比是相似比的平方即可解出.【詳解】∵AB∥CD,∴∠A=∠D,∠B=∠C,∴△ABO∽△DCO,∵AB=1,CD=2,∴△AOB和△DCO相似比為:1:2.∴△AOB和△DCO面積比為:1:4.故選B.【點睛】本題考查相似三角形的面積比,關(guān)鍵在于牢記面積比和相似比的關(guān)系.4、D【分析】過P點作PE⊥x軸于E,PF⊥y軸于F,根據(jù)矩形的性質(zhì)得S矩形OEPF=S矩形OACB=1,然后根據(jù)反比例函數(shù)的比例系數(shù)k的幾何意義求解.【詳解】過P點作PE⊥x軸于E,PF⊥y軸于F,如圖所示:
∵四邊形OACB為矩形,點P為對角線的交點,
∴S矩形OEPF=S矩形OACB=×4=1.
∴k=-1,
所以反比例函數(shù)的解析式是:.故選:D【點睛】考查了反比例函數(shù)的比例系數(shù)k的幾何意義:在反比例函數(shù)y=圖象中任取一點,過這一個點向x軸和y軸分別作垂線,與坐標(biāo)軸圍成的矩形的面積是定值|k|.5、B【分析】根據(jù)“左加右減、上加下減”的原則進(jìn)行解答即可.【詳解】將化為頂點式,得.將拋物線向上平移2個單位長度,再向右平移3個單位長度后,得到的拋物線的解析式為,故選B.【點睛】本題考查的是二次函數(shù)的圖象與幾何變換,要求熟練掌握平移的規(guī)律:左加右減,上加下減.6、B【分析】根據(jù)一元二次方程的定義來解答:二次項系數(shù)是a、一次項系數(shù)是b、常數(shù)項是c.【詳解】解:由方程根據(jù)一元二次方程的定義,知一次項系數(shù)b=-3,故選:B.【點睛】本題考查了解一元二次方程的定義,關(guān)鍵是往往把一次項系數(shù)-3誤認(rèn)為3,所以,在解答時要注意這一點.7、A【解析】∵在中,當(dāng)時,;當(dāng)時,解得;∴點A、B的坐標(biāo)分別為(-4,0)和(0,3),∴OA=4,OB=3,又∵∠AOB=90°,∴AB=,∴cos∠BAO=.故選A.8、A【分析】利用直角三角形的斜邊中線與斜邊的關(guān)系,先求出AB,再利用直角三角形的邊角關(guān)系計算cosA.【詳解】解:∵CD是Rt△ABC斜邊AB上的中線,
∴AB=2CD=4,∴cosA==.故選A.【點睛】本題考查了直角三角形斜邊的中線與斜邊的關(guān)系、銳角三角函數(shù).掌握直角三角形斜邊的中線與斜邊的關(guān)系是解決本題的關(guān)鍵.在直角三角形中,斜邊的中線等于斜邊的一半.9、B【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念判定即可.【詳解】解:A、不是軸對稱圖形,也是中心對稱圖形B、是軸對稱圖形,也是中心對稱圖形;C、是軸對稱圖形,也不是中心對稱圖形;D、不是軸對稱圖形,也不是中心對稱圖形.故答案為B.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念,掌握軸對稱和中心對稱概念的區(qū)別是解答本題的關(guān)鍵.10、C【分析】根據(jù)反比例函數(shù)的性質(zhì)得出k﹣1<0,再由一次函數(shù)的性質(zhì)判斷函數(shù)所經(jīng)過的象限.【詳解】∵雙曲線y經(jīng)過第二、四象限,∴k﹣1<0,則直線y=2x+k﹣1一定經(jīng)過一、三、四象限.故選:C.【點睛】本題考查了一次函數(shù)和反比例函數(shù)的性質(zhì),屬于函數(shù)的基礎(chǔ)知識,難度不大.二、填空題(每小題3分,共24分)11、折線【解析】試題解析:根據(jù)題意,得要求清楚地表示銷售總量的總趨勢是上升還是下降,結(jié)合統(tǒng)計圖各自的特點,應(yīng)選用折線統(tǒng)計圖,12、(-2,0);【分析】由二次函數(shù)的頂點式,即可得到答案.【詳解】解:二次函數(shù)y=3(x+2)的頂點坐標(biāo)是(,0);故答案為:(,0);【點睛】本題考查了二次函數(shù)的性質(zhì),解題的關(guān)鍵是熟練掌握二次函數(shù)的頂點坐標(biāo).13、(,2).【詳解】解:如圖,當(dāng)點B與點D重合時,△BEF面積最大,設(shè)BE=DE=x,則AE=4-x,在RT△ABE中,∵EA2+AB2=BE2,∴(4-x)2+22=x2,∴x=,∴BE=ED=,AE=AD-ED=,∴點E坐標(biāo)(,2).故答案為:(,2).【點睛】本題考查翻折變換(折疊問題),利用數(shù)形結(jié)合思想解題是關(guān)鍵.14、6+1.【分析】先延長EF和BC,交于點G,再根據(jù)條件可以判斷三角形ABE為等腰直角三角形,并求得其斜邊BE的長,然后根據(jù)條件判斷三角形BEG為等腰三角形,最后根據(jù)△EFD∽△GFC得出比例式,DF=3FC計算得出CG與DE的倍數(shù)關(guān)系,并根據(jù)BG=BC+CG進(jìn)行計算即可.【詳解】解:延長EF和BC,交于點G∵矩形ABCD中,∠B的角平分線BE與AD交于;∴∠ABE=∠AEB=45°,∴AB=AE=8,∴直角三角形ABE中,BE=8,又∵∠BED的角平分線EF與DC交于點F,∴∠BEG=∠DEF∵AD∥BC∴∠G=∠DEF∴∠BEG=∠G∴BG=BE=8,∵∠G=∠DEF,∠EFD=∠GFC,∴△EFD∽△GFC∵DF=3FC,設(shè)CG=x,DE=3x,則AD=8+3x=BC∵BG=BC+CG∴8=8+3x+x解得x=1-1,∴BC=8+3(1-1)=6+1,故答案為:6+1.【點睛】本題主要考查矩形的性質(zhì)、相似三角形性質(zhì)和判定以及等腰三角形的性質(zhì),解決問題的關(guān)鍵是得出BG=BE,從而進(jìn)行計算.15、【分析】連接DF,OD,根據(jù)圓周角定理得到∠CDF=90°,根據(jù)三角形的內(nèi)角和得到∠COD=120°,根據(jù)三角函數(shù)的定義得到CF==4,根據(jù)弧長公式即可得到結(jié)論.【詳解】解:如圖,連接DF,OD,∵CF是⊙O的直徑,∴∠CDF=90°,∵∠ADC=60°,∠A=90°,∴∠ACD=30°,∵CD平分∠ACB交AB于點D,∴∠DCF=30°,∵OC=OD,∴∠OCD=∠ODC=30°,∴∠COD=120°,在Rt△CAD中,CD=2AD=2,在Rt△FCD中,CF===4,∴⊙O的半徑=2,∴劣弧的長==π,故答案為π.【點睛】本題考查了圓周角定理,解直角三角形,弧長的計算,作出輔助線構(gòu)建直角三角形是本題的關(guān)鍵.16、(2,0)相切【分析】由網(wǎng)格容易得出AB的垂直平分線和BC的垂直平分線,它們的交點即為點M,根據(jù)圖形即可得出點M的坐標(biāo);由于C在⊙M上,如果CD與⊙M相切,那么C點必為切點;因此可連接MC,證MC是否與CD垂直即可.可根據(jù)C、M、D三點坐標(biāo),分別表示出△CMD三邊的長,然后用勾股定理來判斷∠MCD是否為直角.【詳解】解:如圖,作線段AB,CD的垂直平分線交點即為M,由圖可知經(jīng)過A、B、C三點的圓弧所在圓的圓心M的坐標(biāo)為(2,0).
連接MC,MD,
∵M(jìn)C2=42+22=20,CD2=42+22=20,MD2=62+22=40,∴MD2=MC2+CD2,∴∠MCD=90°,
又∵M(jìn)C為半徑,
∴直線CD是⊙M的切線.故答案為:(2,0);相切.【點睛】本題考查的直線與圓的位置關(guān)系,圓的切線的判定等知識,在網(wǎng)格和坐標(biāo)系中巧妙地與圓的幾何證明有機(jī)結(jié)合,較新穎.17、【分析】直接利用阻力×阻力臂=動力×動力臂,進(jìn)而將已知量據(jù)代入得出函數(shù)關(guān)系式.【詳解】∵阻力×阻力臂=動力×動力臂.小偉欲用撬棍撬動一塊石頭,已知阻力和阻力臂分別是1200N和0.5m,∴動力F(單位:N)關(guān)于動力臂l(單位:m)的函數(shù)解析式為:1200×0.5=Fl,則.故答案為:.【點睛】此題主要考查了反比例函數(shù)的應(yīng)用,正確讀懂題意得出關(guān)系式是解題關(guān)鍵.18、16【分析】利用相似三角形面積比等于相似比的平方求解即可.【詳解】解:∵ABC與DEF相似,且ΔABC與ΔDEF的相似比為2:3,∴,∵ΔDEF的面積為36,∴∴ΔABC的面積等于16,故答案為16.【點睛】本題考查了相似三角形的性質(zhì),熟記相似三角形的面積比等于相似比的平方是解決本題的關(guān)鍵.三、解答題(共66分)19、(1)2;(2)1【分析】(1)將A坐標(biāo)代入反比例函數(shù)解析式中,即可求出a的值;(2)由(1)求出的a值,確定出A坐標(biāo),代入直線解析式中求出b的值,令直線解析式中y=0求出x的值,確定出OC的長,△AOC以O(shè)C為底,A縱坐標(biāo)為高,利用三角形面積公式求出即可.【詳解】(1)將A(1,a)代入反比例解析式得:;(2)由a=2,得到A(1,2),代入直線解析式得:1+b=2,解得:b=1,即直線解析式為y=x+1,令y=0,解得:x=-1,即C(-1,0),OC=1,則S△AOC=×1×2=1.【點睛】此題考查了反比例函數(shù)與一次函數(shù)的交點問題,涉及的知識有:坐標(biāo)與圖形性質(zhì),待定系數(shù)法確定函數(shù)解析式,三角形的面積求法,熟練掌握待定系數(shù)法是解本題的關(guān)鍵.20、(1)矩形的邊長為10和2;(2)這個矩形的面積S與其一邊長x的關(guān)系式是S=-x2+30x;當(dāng)矩形的面積取得最大值時,矩形是邊長為15的正方形.【分析】(1)設(shè)矩形的一邊長為,則矩形的另一邊長為,根據(jù)矩形的面積為20列出相應(yīng)的方程,從而可以求得矩形的邊長;
(2)根據(jù)題意可以得到矩形的面積與一邊長的函數(shù)關(guān)系,然后根據(jù)二次函數(shù)的性質(zhì)可以求得矩形的最大面積,并求出矩形面積最大時它的邊長.【詳解】解:(1)設(shè)矩形的一邊長為,則矩形的另一邊長為,根據(jù)題意,得,解得,.答:矩形的邊長為10和2.(2)設(shè)矩形的一邊長為,面積為S,根據(jù)題意可得,,所以,當(dāng)矩形的面積最大時,.答:這個矩形的面積與其一邊長的關(guān)系式是S=-x2+30x,當(dāng)矩形面積取得最大值時,矩形是邊長為15的正方形.【點睛】本題考查二次函數(shù)的應(yīng)用、一元二次方程的應(yīng)用,解答本題的關(guān)鍵是明確題意,列出相應(yīng)的方程以及函數(shù)關(guān)系式,利用二次函數(shù)的性質(zhì)解答.21、1或7【分析】先根據(jù)勾股定理求出OF=4,OE=3,再分AB、CD在點O的同側(cè)時,AB、CD在點O的兩側(cè)時兩種情況分別計算求出EF即可.【詳解】如圖,過點O作OE⊥CD于E,交AB于點F,∵,∴OE⊥AB,在Rt△AOF中,OA=5,AF=AB=3,∴OF=4,在Rt△COE中,OC=5,CE=CD=4,∴OE=3,當(dāng)AB、CD在點O的同側(cè)時,、間的距離EF=OF-OE=4-3=1;當(dāng)AB、CD在點O的兩側(cè)時,AB、CD間的距離EF=OE+OF=3+4=7,故答案為:1或7.【點睛】此題考查了圓的垂徑定理,勾股定理,在圓中通常利用垂徑定理和勾股定理求半徑、弦的一半、弦心距三者中的一個量.22、(1)拋物線的解析式為;(2)①P點坐標(biāo)為P1()或P2()或P2();②D().【分析】(1)首先解方程得出A,B兩點的坐標(biāo),從而利用待定系數(shù)法求出二次函數(shù)解析式即可.(2)①首先求出AB的直線解析式,以及BO解析式,再利用等腰三角形的性質(zhì)得出當(dāng)OC=OP時,當(dāng)OP=PC時,點P在線段OC的中垂線上,當(dāng)OC=PC時分別求出x的值即可.②利用S△BOD=S△ODQ+S△BDQ得出關(guān)于x的二次函數(shù),從而得出最值即可.【詳解】解:(1)解方程x2﹣2x﹣2=0,得x1=2,x2=﹣1.∵m<n,∴m=﹣1,n=2.∴A(﹣1,﹣1),B(2,﹣2).∵拋物線過原點,設(shè)拋物線的解析式為y=ax2+bx.∴,解得:.∴拋物線的解析式為.(2)①設(shè)直線AB的解析式為y=kx+b.∴,解得:.∴直線AB的解析式為.∴C點坐標(biāo)為(0,).∵直線OB過點O(0,0),B(2,﹣2),∴直線OB的解析式為y=﹣x.∵△OPC為等腰三角形,∴OC=OP或OP=PC或OC=PC.設(shè)P(x,﹣x).(i)當(dāng)OC=OP時,,解得(舍去).∴P1().(ii)當(dāng)OP=PC時,點P在線段OC的中垂線上,∴P2().(iii)當(dāng)OC=PC時,由,解得(舍去).∴P2().綜上所述,P點坐標(biāo)為P1()或P2()或P2().②過點D作DG⊥x軸,垂足為G,交OB于Q,過B作BH⊥x軸,垂足為H.設(shè)Q(x,﹣x),D(x,).S△BOD=S△ODQ+S△BDQ=DQ?OG+DQ?GH=DQ(OG+GH)==.∵0<x<2,∴當(dāng)時,S取得最大值為,此時D().【點睛】本題考查的是二次函數(shù)綜合運(yùn)用,涉及到一次函數(shù)、解一元二次方程、圖形的面積計算等,其中(2)要注意分類求解,避免遺漏.23、(1)證明見解析;(2)【分析】(1)由等腰三角形的性質(zhì)可得∠C=∠B,∠ODB=∠C,從而∠ODB=∠C,根據(jù)同位角相等兩直線平行可證OD∥AC,進(jìn)而可證明結(jié)論;(2)①當(dāng)點E在CA的延長線上時,設(shè)DE與AB交于點F,圍成的圖形為△ODF;②當(dāng)點E在線段AC上時,圍成的圖形為梯形AODE.根據(jù)三角形和梯形的面積公式列出函數(shù)關(guān)系式,利用二次函數(shù)的性質(zhì)求解.【詳解】證明:(1)連接OD,∵AB=AC,∴∠C=∠B.∵OB=OD,∴∠ODB=∠B∴∠ODB=∠C∴OD∥AC.∵DE⊥AC,∴OD⊥DE,∴DE是⊙O的切線.(2)①當(dāng)點E在CA的延長線上時,設(shè)DE與AB交于點F,圍成的圖形為△ODF.∵OD=OB=x,∠B=30°,∴∠FOD=60°,∵∠ODE=90°,∴DF=x,∴S△ODF=x·x=,(0<x≤)當(dāng)x=時,S△ODF最大,最大值為;②當(dāng)點E在線段AC上時,圍成的圖形為梯形AODE.∵AB=AC=10,∠B=30°,∴BC=10,作OH⊥BC,∵OD=OB=x,∠B=30°,∴BD=2BH=x,∴CD=10-x,∵∠C=30°,∠DEC=90°,∴DE=(10-x),CE=(10-x)=15-x,∴AE=x-5,∴S梯形AODE=(x-5+x)·(10-x)=(-+12x-20)(<x<10)當(dāng)x=6時,S梯形AODE最大,最大值為10;綜上所述,當(dāng)x=6時,重合部分的面積最大,最大值為10.點睛:本題考查了等腰三角形的性質(zhì),平行線的判定與性質(zhì),切線的判定,解直角三角形,三角形和梯形的面積公式,二次函數(shù)的性質(zhì),知識點比較多,難度比較大.熟練掌握切線的判定方法及二次函數(shù)的性質(zhì)是解答本題的關(guān)鍵.24、(1);(2);(3)當(dāng)時,的值最大,最大值為9000元【分析】(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024辣椒購銷合同爭議的解決方式
- 2025年度智能化廚房設(shè)備采購與安裝一體化合同4篇
- 2025年投標(biāo)采購心得體會總結(jié)與合同管理創(chuàng)新合同3篇
- 個人房屋轉(zhuǎn)讓協(xié)議書合同范本
- 2024年駕校場地使用權(quán)益轉(zhuǎn)讓合同
- 2025年度煤礦廢棄資源煤矸石回收利用合同4篇
- 2025年度油氣田鉆井工程合同執(zhí)行監(jiān)督合同范本4篇
- 全新2025年度醫(yī)療設(shè)備采購與安裝合同5篇
- 2025版污水處理廠智能化改造與運(yùn)營維護(hù)協(xié)議3篇
- 2025版領(lǐng)隊與紀(jì)念品供應(yīng)商合作協(xié)議范本4篇
- 2024-2030年中國護(hù)肝解酒市場營銷策略分析與未來銷售渠道調(diào)研研究報告
- 人教版高中數(shù)學(xué)必修二《第十章 概率》單元同步練習(xí)及答案
- 智慧校園信息化建設(shè)項目組織人員安排方案
- 浙教版七年級上冊數(shù)學(xué)第4章代數(shù)式單元測試卷(含答案)
- 一病一品成果護(hù)理匯報
- AQ-T 1009-2021礦山救護(hù)隊標(biāo)準(zhǔn)化考核規(guī)范
- 鹽酸埃克替尼臨床療效、不良反應(yīng)與藥代動力學(xué)的相關(guān)性分析的開題報告
- 消防設(shè)施安全檢查表
- 組合結(jié)構(gòu)設(shè)計原理 第2版 課件 第6、7章 鋼-混凝土組合梁、鋼-混凝土組合剪力墻
- 建筑公司資質(zhì)常識培訓(xùn)課件
- GB/T 26316-2023市場、民意和社會調(diào)查(包括洞察與數(shù)據(jù)分析)術(shù)語和服務(wù)要求
評論
0/150
提交評論