四川省瀘州市江陽區(qū)2025屆數(shù)學九上期末教學質(zhì)量檢測試題含解析_第1頁
四川省瀘州市江陽區(qū)2025屆數(shù)學九上期末教學質(zhì)量檢測試題含解析_第2頁
四川省瀘州市江陽區(qū)2025屆數(shù)學九上期末教學質(zhì)量檢測試題含解析_第3頁
四川省瀘州市江陽區(qū)2025屆數(shù)學九上期末教學質(zhì)量檢測試題含解析_第4頁
四川省瀘州市江陽區(qū)2025屆數(shù)學九上期末教學質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩20頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

四川省瀘州市江陽區(qū)2025屆數(shù)學九上期末教學質(zhì)量檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每題4分,共48分)1.第一中學九年級有340名學生,現(xiàn)對他們的生日進行統(tǒng)計(可以不同年),下列說法正確的是()A.至少有兩人生日相同 B.不可能有兩人生日相同C.可能有兩人生日相同,且可能性較大 D.可能有兩人生日相同,但可能性較小2.用配方法解方程x2+6x+4=0,下列變形正確的是()A.(x+3)2=﹣4 B.(x﹣3)2=4 C.(x+3)2=5 D.(x+3)2=±3.如圖,正方形的邊長為4,點是的中點,點從點出發(fā),沿移動至終點,設(shè)點經(jīng)過的路徑長為,的面積為,則下列圖象能大致反映與函數(shù)關(guān)系的是()A. B. C. D.4.對于二次函數(shù)的圖象,下列結(jié)論錯誤的是()A.頂點為原點 B.開口向上 C.除頂點外圖象都在軸上方 D.當時,有最大值5.如圖,在平直角坐標系中,過軸正半軸上任意一點作軸的平行線,分別交函數(shù)、的圖象于點、點.若是軸上任意一點,則的面積為()A.9 B.6 C. D.36.如圖,△ABC為⊙O的內(nèi)接三角形,若∠AOC=160°,則∠ADC的度數(shù)是()A.80° B.160° C.100° D.40°7.拋物線y=3(x+2)2﹣(m2+1)(m為常數(shù))的頂點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.點M(2,-3)關(guān)于原點對稱的點N的坐標是:()A.(-2,-3) B.(-2,3) C.(2,3) D.(-3,2)9.若關(guān)于x的一元二次方程kx2﹣2x﹣1=0有實數(shù)根,則k的取值范圍是()A.k≥﹣1且k≠0 B.k≥﹣1 C.k≤1 D.k≤1且k≠010.已知二次函數(shù)y=ax2+2ax+3a2+3(其中x是自變量),當x≥2時,y隨x的增大而增大,且-2≤x≤1時,y的最大值為9,則a的值為A.1或 B.-或 C. D.111.反比例函數(shù)y=的圖象與直線y=﹣x+2有兩個交點,且兩交點橫坐標的積為負數(shù),則t的取值范圍是()A.t< B.t> C.t≤ D.t≥12.已知拋物線與二次函數(shù)的圖像相同,開口方向相同,且頂點坐標為,它對應(yīng)的函數(shù)表達式為()A. B.C. D.二、填空題(每題4分,共24分)13.如圖,點A、B、C、D都在⊙O上,∠ABC=90°,AD=4,CD=3,則⊙O的半徑的長是______.14.若關(guān)于的一元二次方程沒有實數(shù)根,則的取值范圍是__________.15.如圖,在△ABC中,點D,E分別在邊AB,AC上,若DE∥BC,AD=2BD,則DE:BC等于_______.16.用一張半徑為14cm的扇形紙片做一個如圖所示的圓錐形小丑帽子側(cè)面(接縫忽略不計),如果做成的圓錐形小丑帽子的底面半徑為10cm,那么這張扇形紙片的面積是________cm1.17.如圖,若一個半徑為1的圓形紙片在邊長為6的等邊三角形內(nèi)任意運動,則在該等邊三角形內(nèi),這個圓形紙片能接觸到的最大面積為_____.18.在一個不透明的袋子中,裝有1個紅球和2個白球,這些球除顏色外其余都相同。攪勻后從中隨機一次摸出兩個球,則摸到的兩個球都是白球的概率是____.三、解答題(共78分)19.(8分)如圖,已知在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC邊于點D,以AB上點O為圓心作⊙O,使⊙O經(jīng)過點A和點D.(1)判斷直線BC與⊙O的位置關(guān)系,并說明理由;(2)若AE=6,劣弧DE的長為π,求線段BD,BE與劣弧DE所圍成的陰影部分的面積(結(jié)果保留根號和π).20.(8分)如圖,已知AB為⊙O的直徑,點C、D在⊙O上,CD=BD,E、F是線段AC、AB的延長線上的點,并且EF與⊙O相切于點D.(1)求證:∠A=2∠BDF;(2)若AC=3,AB=5,求CE的長.21.(8分)已知關(guān)于的方程(1)判斷方程根的情況(2)若兩根異號,且正根的絕對值較大,求整數(shù)的值.22.(10分)已知:二次函數(shù)、圖像的頂點分別為A、B(其中m、a為實數(shù)),點C的坐標為(0,).(1)試判斷函數(shù)的圖像是否經(jīng)過點C,并說明理由;(2)若m為任意實數(shù)時,函數(shù)的圖像始終經(jīng)過點C,求a的值;(3)在(2)的條件下,存在不唯一的x值,當x增大時,函數(shù)的值減小且函數(shù)的值增大.①直接寫出m的范圍;②點P為x軸上異于原點O的任意一點,過點P作y軸的平行線,與函數(shù)、的圖像分別相交于點D、E.試說明的值只與點P的位置有關(guān).23.(10分)如圖所示,在平面直角坐標系中,過點A(﹣,0)的兩條直線分別交y軸于B、C兩點,且B、C兩點的縱坐標分別是一元二次方程x2﹣2x﹣3=0的兩個根.(1)求線段BC的長度;(2)試問:直線AC與直線AB是否垂直?請說明理由;(3)若點D在直線AC上,且DB=DC,求點D的坐標.24.(10分)如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于A(﹣2,1),B(1,n)兩點.根據(jù)以往所學的函數(shù)知識以及本題的條件,你能提出求解什么問題?并解決這些問題(至少三個問題).25.(12分)閱讀下列材料:小輝和小樂一起在學校寄宿三年了,畢業(yè)之際,他們想合理分配共同擁有的三件“財產(chǎn)”:一個電子詞典、一臺迷你唱機、一套珍藏版小說.他們本著“在尊重各自的價值偏好基礎(chǔ)上進行等值均分”的原則,設(shè)計了分配方案,步驟如下(相應(yīng)的數(shù)額如表二所示):①每人各自定出每件物品在心中所估計的價值;②計算每人所有物品估價總值和均分值(均分:按總?cè)藬?shù)均分各自估價總值);③每件物品歸估價較高者所有;④計算差額(差額:每人所得物品的估價總值與均分值之差);⑤小樂拿225元給小輝,仍“剩下”的300元每人均分.依此方案,兩人分配的結(jié)果是:小輝拿到了珍藏版小說和375元錢,小樂拿到的電子詞典和迷你唱機,但要付出375元錢.(1)甲、乙、丙三人分配A,B,C三件物品,三人的估價如表三所示,依照上述方案,請直接寫出分配結(jié)果;(2)小紅和小麗分配D,E兩件物品,兩人的估價如表四所示(其中0<m-n<15).按照上述方案的前四步操作后,接下來,依據(jù)“在尊重各自的價值偏好基礎(chǔ)上進行等值均分”的原則,該怎么分配較為合理?請完成表四,并寫出分配結(jié)果.(說明:本題表格中的數(shù)值的單位均為“元”)26.如圖1,的余切值為2,,點D是線段上的一動點(點D不與點A、B重合),以點D為頂點的正方形的另兩個頂點E、F都在射線上,且點F在點E的右側(cè),聯(lián)結(jié),并延長,交射線于點P.(1)點D在運動時,下列的線段和角中,________是始終保持不變的量(填序號);①;②;③;④;⑤;⑥;(2)設(shè)正方形的邊長為x,線段的長為y,求y與x之間的函數(shù)關(guān)系式,并寫出定義域;(3)如果與相似,但面積不相等,求此時正方形的邊長.

參考答案一、選擇題(每題4分,共48分)1、C【分析】依據(jù)可能性的大小的概念對各選項進行逐一分析即可.【詳解】A.因為一年有365天而某學校只有340人,所以至少有兩名學生生日相同是隨機事件.故本選項錯誤;B.兩人生日相同是隨機事件,故本選項錯誤;C.因為320365=6473>50%,所以可能性較大.正確;D.由C可知,可能性較大,故本選項錯誤.故選:C.【點睛】本題考查了可能性的大小,也考查了我們對常識的了解情況.2、C【解析】x2+6x+4=0,移項,得x2+6x=-4,配方,得x2+6x+32=-4+32,即(x+3)2=5.故選C.3、C【分析】結(jié)合題意分情況討論:①當點P在AE上時,②當點P在AD上時,③當點P在DC上時,根據(jù)三角形面積公式即可得出每段的y與x的函數(shù)表達式.【詳解】①當點在上時,∵正方形邊長為4,為中點,∴,∵點經(jīng)過的路徑長為,∴,∴,②當點在上時,∵正方形邊長為4,為中點,∴,∵點經(jīng)過的路徑長為,∴,,∴,,,,③當點在上時,∵正方形邊長為4,為中點,∴,∵點經(jīng)過的路徑長為,∴,,∴,綜上所述:與的函數(shù)表達式為:.故答案為C.【點睛】本題考查動點問題的函數(shù)圖象,解決動點問題的函數(shù)圖象問題關(guān)鍵是發(fā)現(xiàn)y隨x的變化而變化的趨勢.4、D【分析】根據(jù)二次函數(shù)的性質(zhì)逐項判斷即可.【詳解】根據(jù)二次函數(shù)的性質(zhì),可得:二次函數(shù)頂點坐標為(0,0),開口向上,故除頂點外圖象都在x軸上方,故A、B、C正確;當x=0時,y有最小值為0,故D錯誤.故選:D.【點睛】本題考查二次函數(shù)的性質(zhì),熟練掌握二次函數(shù)頂點坐標,開口方向,最值與系數(shù)之間的關(guān)系是解題的關(guān)鍵.5、C【分析】連接OA、OB,利用k的幾何意義即得答案.【詳解】解:連接OA、OB,如圖,因為AB⊥x軸,則AB∥y軸,,,,所以.故選C.【點睛】本題考查了反比例函數(shù)系數(shù)k的幾何意義,屬于??碱}型,熟知k的幾何意義是關(guān)鍵.6、C【分析】根據(jù)圓周角定理以及圓內(nèi)接四邊形的性質(zhì)即可解決問題;【詳解】解:∵∠AOC=2∠B,∠AOC=160°,

∴∠B=80°,

∵∠ADC+∠B=180°,

∴∠ADC=100°,

故選:C.【點睛】本題考查圓周角定理、圓內(nèi)接四邊形的性質(zhì)等知識,解題的關(guān)鍵是熟練掌握基本知識.7、C【分析】根據(jù)二次函數(shù)的性質(zhì)求出拋物線的頂點坐標,根據(jù)偶次方的非負性判斷.【詳解】拋物線y=3(x+2)2﹣(m2+1)的的頂點坐標為(﹣2,﹣(m2+1)),∵m2+1>0,∴﹣(m2+1)<0,∴拋物線的頂點在第三象限,故選:C.【點睛】本題考查的是二次函數(shù)的性質(zhì),掌握二次函數(shù)的頂點坐標的確定方法、偶次方的非負性是解題的關(guān)鍵.8、B【解析】試題解析:已知點M(2,-3),則點M關(guān)于原點對稱的點的坐標是(-2,3),故選B.9、A【分析】根據(jù)一元二次方程的定義和判別式的意義得到k≠1且△=22-4k×(-1)≥1,然后求出兩個不等式的公共部分即可.【詳解】根據(jù)題意得k≠1且△=22-4k×(-1)≥1,解得k≥-1且k≠1.故選A.【點睛】本題考查了一元二次方程ax2+bx+c=1(a≠1)的根的判別式△=b2-4ac:當△>1,方程有兩個不相等的實數(shù)根;當△=1,方程有兩個相等的實數(shù)根;當△<1,方程沒有實數(shù)根.也考查了一元二次方程的定義.10、D【解析】先求出二次函數(shù)的對稱軸,再根據(jù)二次函數(shù)的增減性得出拋物線開口向上a>0,然后由-2≤x≤1時,y的最大值為9,可得x=1時,y=9,即可求出a.【詳解】∵二次函數(shù)y=ax2+2ax+3a2+3(其中x是自變量),∴對稱軸是直線x=-=-1,∵當x≥2時,y隨x的增大而增大,∴a>0,∵-2≤x≤1時,y的最大值為9,∴x=1時,y=a+2a+3a2+3=9,∴3a2+3a-6=0,∴a=1,或a=-2(不合題意舍去).故選D.【點睛】本題考查了二次函數(shù)的性質(zhì),二次函數(shù)y=ax2+bx+c(a≠0)的頂點坐標是(-,),對稱軸直線x=-,二次函數(shù)y=ax2+bx+c(a≠0)的圖象具有如下性質(zhì):①當a>0時,拋物線y=ax2+bx+c(a≠0)的開口向上,x<-時,y隨x的增大而減?。粁>-時,y隨x的增大而增大;x=-時,y取得最小值,即頂點是拋物線的最低點.②當a<0時,拋物線y=ax2+bx+c(a≠0)的開口向下,x<-時,y隨x的增大而增大;x>-時,y隨x的增大而減小;x=-時,y取得最大值,即頂點是拋物線的最高點.11、B【分析】將一次函數(shù)解析式代入到反比例函數(shù)解析式中,整理得出x2﹣2x+1﹣6t=0,又因兩函數(shù)圖象有兩個交點,且兩交點橫坐標的積為負數(shù),根據(jù)根的判別式以及根與系數(shù)的關(guān)系可求解.【詳解】由題意可得:﹣x+2=,所以x2﹣2x+1﹣6t=0,∵兩函數(shù)圖象有兩個交點,且兩交點橫坐標的積為負數(shù),∴解不等式組,得t>.故選:B.點睛:此題主要考查了反比例函數(shù)與一次函數(shù)的交點問題,關(guān)鍵是利用兩個函數(shù)的解析式構(gòu)成方程,再利用一元二次方程的根與系數(shù)的關(guān)系求解.12、D【分析】先根據(jù)拋物線與二次函數(shù)的圖像相同,開口方向相同,確定出二次項系數(shù)a的值,然后再通過頂點坐標即可得出拋物線的表達式.【詳解】∵拋物線與二次函數(shù)的圖像相同,開口方向相同,∵頂點坐標為∴拋物線的表達式為故選:D.【點睛】本題主要考查拋物線的頂點式,掌握二次函數(shù)表達式中的頂點式是解題的關(guān)鍵.二、填空題(每題4分,共24分)13、2.5【分析】連接AC,根據(jù)∠ABC=90°可知AC是⊙O的直徑,故可得出∠D=90°,再由AD=4,CD=3可求出AC的長,進而得出結(jié)論.【詳解】解:如圖,連接AC,∵∠ABC=90°,

∴AC是⊙O的直徑,

∴∠D=90°,

∵AD=4,CD=3,

∴AC=5,∴⊙O的半徑=2.5,故答案為:2.5.【點睛】本題考查的是圓周角定理,熟知直徑所對的圓周角是直角是解答此題的關(guān)鍵.14、【分析】根據(jù)根判別式可得出關(guān)于的一元一次不等式組,解不等式組即可得出結(jié)論.【詳解】由于關(guān)于一元二次方程沒有實數(shù)根,∵,,,∴,解得:.故答案為:.【點睛】本題考查了一元二次方程為常數(shù))的根的判別式.當0,方程有兩個不相等的實數(shù)根;當0,方程有兩個相等的實數(shù)根;當0,方程沒有實數(shù)根.15、2:1【分析】根據(jù)DE∥BC得出△ADE∽△ABC,結(jié)合AD=2BD可得出相似比即可求出DE:BC.【詳解】解:∵DE∥BC,∴△ADE∽△ABC,∴,∵AD=2BD,∴,∴DE:BC=2:1,故答案為:2:1.【點睛】本題考查了相似三角形的判定及性質(zhì),屬于基礎(chǔ)題型,解題的關(guān)鍵是熟悉相似三角形的判定及性質(zhì),靈活運用線段的比例關(guān)系.16、110∏C㎡【解析】試題分析:∵圓錐的底面周長為10π,∴扇形紙片的面積=×10π×14=140πcm1.故答案為140π.考點:圓錐的計算.17、6+π.【分析】根據(jù)直角三角形的面積和扇形面積公式先求出圓形紙片不能接觸到的面積,再用等邊三角形的面積去減即可得能接觸到的最大面積.【詳解】解:如圖,當圓形紙片運動到與∠A的兩邊相切的位置時,過圓形紙片的圓心O作兩邊的垂線,垂足分別為D,E,連接AO,則Rt△ADO中,∠OAD=30°,OD=1,AD=,∴S△ADO=OD?AD=,∴S四邊形ADOE=2S△ADO=,∵∠DOE=120°,∴S扇形DOE=,∴紙片不能接觸到的部分面積為:3(﹣)=3﹣π∵S△ABC=×6×3=9∴紙片能接觸到的最大面積為:9﹣3+π=6+π.故答案為6+π.【點睛】此題主要考查圓的綜合運用,解題的關(guān)鍵是熟知等邊三角形的性質(zhì)、扇形面積公式.18、.【分析】用列表法或畫樹狀圖法分析所有等可能的結(jié)果,然后根據(jù)概率公式求出該事件的概率.【詳解】解:畫樹狀圖如下:

∵一共有6種情況,兩個球都是白球有2種,

∴P(兩個球都是白球),

故答案為:.【點睛】本題考查的是用列表法或畫樹狀圖法求概率,列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.三、解答題(共78分)19、(1)直線BC與⊙O相切,理由詳見解析;(2).【分析】(1)連接OD,由角平分線的定義可得∠DAC=∠DAB,根據(jù)等腰三角形的性質(zhì)可得∠OAD=∠ODA,即可證明OD//AC,根據(jù)平行線的性質(zhì)可得,可得直線BC與⊙O相切;(2)利用弧長公式可求出∠DOE=60°,根據(jù)∠DOE的正切可求出BD的長,利用三角形和扇形的面積公式即可得答案.【詳解】(1)直線與⊙O相切,理由如下:連接,∵是的平分線,∴,∵,∴,∴,∴,∴,∴,∴直線與⊙O相切.(2)∵,劣弧的長為,∴,∴∵,∴,∴.∴BE與劣弧DE所圍成的陰影部分的面積為.【點睛】本題考查切線的判定、弧長公式及扇形面積,經(jīng)過半徑的外端點并且垂直于這條半徑的直線的圓的切線;n°的圓心角所對的弧長為l=(r為半徑);圓心角為n°的扇形的面積為S扇形=(r為半徑);熟練掌握弧長公式及扇形面積公式是解題關(guān)鍵.20、(1)見解析:(2)CE=1.【分析】(1)連接AD,如圖,先證明得到∠1=∠2,再根據(jù)圓周角定理得到∠ADB=90°,根據(jù)切線的性質(zhì)得到OD⊥EF,然后證明∠1=∠4得到結(jié)論;(2)連接BC交OD于F,如圖,根據(jù)圓周角定理得到∠ACB=90°,再根據(jù)垂徑定理,由得到OD⊥BC,則CF=BF,所以O(shè)F=AC=,從而得到DF=1,然后證明四邊形CEDF為矩形得CE=1.【詳解】(1)證明:連接AD,如圖,∵CD=BD,∴,∴∠1=∠2,∵AB為直徑,∴∠ADB=90°,∴∠1+∠ABD=90°,∵EF為切線,∴OD⊥EF,∴∠3+∠4=90°,∵OD=OB,∴∠3=∠OBD,∴∠1=∠4,∴∠A=2∠BDF;(2)解:連接BC交OD于F,如圖,∵AB為直徑,∴∠ACB=90°,∵,∴OD⊥BC,∴CF=BF,∴OF=AC=,∴DF=﹣=1,∵∠ACB=90°,OD⊥BC,OD⊥EF,∴四邊形CEDF為矩形,∴CE=DF=1.【點睛】本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.也考查了圓周角定理和勾股定理.21、(1)證明見解析;(2)m=-1【分析】(1)通過計算判別式的值得到△≥0,從而根據(jù)判別式的意義得到方程根的情況;(2)利用根與系數(shù)的關(guān)系得到x1+x2=m+2,x1x2=2m,則,解不等式組,進而得到整數(shù)m的值.【詳解】解:(1)∵,∴方程有兩個實數(shù)根;(2)設(shè)方程的兩根為x1,x2,則x1+x2=m+2,x1x2=2m,根據(jù)題意得,解得:-2<m<0,因為m是整數(shù),所以m=-1.【點睛】本題考查了一元二次方程根的判別式以及根與系數(shù)的關(guān)系,根據(jù)題意得出不等式組是解(2)的關(guān)鍵.22、(1)函數(shù)y1的圖像經(jīng)過點C,見解析;(2);(3)①;②見解析【分析】(1)取x=0時,計算得,說明函數(shù)的圖像經(jīng)過點C;(2)將點C(0,)代入得,求得a的值;(3)①只要的對稱軸始終在的對稱軸右側(cè),就滿足題目的要求,得出m的范圍;②設(shè)點P的坐標為(,0),求得DE=,利用勾股定理求得AB=,即可說明結(jié)論.【詳解】(1)函數(shù)的圖像經(jīng)過點C.理由如下:當x=0時,==,∴函數(shù)的圖像經(jīng)過點C.(2)將點C(0,)代入得:,∴,∵m為任意實數(shù)時,函數(shù)的圖像始終經(jīng)過點C,∴的成立與m無關(guān),∴,∴;(3)①的對稱軸為:,的對稱軸為:,∵,∴兩函數(shù)的圖像開口向下,當時,x增大時,函數(shù)的值減小且函數(shù)的值增大.∴;②設(shè)點P的坐標為(,0),則=,=,∴DE===由①可知:,∴DE=;過A點作x軸的平行線,過B點作y軸的平行線,兩平行線相交點F,則點F的坐標為(,),∴AF==,BF==,∴AB==,∴==,故的值只與點P的位置有關(guān).【點睛】本題考查了二次函數(shù)的圖象與系數(shù)之間的關(guān)系,拋物線的頂點坐標公式、對稱軸方程、勾股定理,構(gòu)造直角三角形ABF求得AB的長是解題的關(guān)鍵.23、(1)線段BC的長度為4;(2)AC⊥AB,理由見解析;(3)點D的坐標為(﹣2,1)【解析】(1))解出方程后,即可求出B、C兩點的坐標,即可求出BC的長度;

(2)由A、B、C三點坐標可知OA2=OC?OB,所以可證明△AOC∽△BOA,利用對應(yīng)角相等即可求出∠CAB=90°;

(3)容易求得直線AC的解析式,由DB=DC可知,點D在BC的垂直平分線上,所以D的縱坐標為1,將其代入直線AC的解析式即可求出D的坐標;【詳解】解:(1)∵x2﹣2x﹣3=0,∴x=3或x=﹣1,∴B(0,3),C(0,﹣1),∴BC=4,(2)∵A(﹣,0),B(0,3),C(0,﹣1),∴OA=,OB=3,OC=1,∴OA2=OB?OC,∵∠AOC=∠BOA=90°,∴△AOC∽△BOA,∴∠CAO=∠ABO,∴∠CAO+∠BAO=∠ABO+∠BAO=90°,∴∠BAC=90°,∴AC⊥AB;(3)設(shè)直線AC的解析式為y=kx+b,把A(﹣,0)和C(0,﹣1)代入y=kx+b,∴,解得:,∴直線AC的解析式為:y=﹣x﹣1,∵DB=DC,∴點D在線段BC的垂直平分線上,∴D的縱坐標為1,∴把y=1代入y=﹣x﹣1,∴x=﹣2,∴D的坐標為(﹣2,1),【點睛】本題考查二次函數(shù)的綜合問題,涉及一元二次方程的解法,相似三角形的判定,等腰三角形的性質(zhì),垂直平分線的判定等知識,內(nèi)容較為綜合,需要學生靈活運用所知識解決.24、見解析【分析】根據(jù)反比例函數(shù)的性質(zhì)、一次函數(shù)的性質(zhì)及三角形的面積公式即可求解.【詳解】解:①求反比例函數(shù)的解析式設(shè)反比例函數(shù)解析式為將A(-2,1)代入得k=-2所以反比例函數(shù)的解析式為②求B點的坐標.(或n的值)將x=1代入得y=-2所以B(1,-2)③求一次函數(shù)解析式設(shè)一次函數(shù)解析式為y=kx+b將A(-2,1)B(1,-2)代入得解得所以一次函數(shù)的解析式為y=-x-1④利用圖像直接寫出當x為何值時一次函數(shù)值等于反比例函數(shù)值.x=-2或x=1時⑤利用圖像直接寫出一次函數(shù)值大于反比例函數(shù)值時,x的取值范圍.x<-2或0<x<1⑥利用圖像直接寫出一次函數(shù)值小于反比例函數(shù)值時,x的取值范圍.-2<x<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論