




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.解方程,選擇最適當?shù)姆椒ㄊ牵ǎ〢.直接開平方法 B.配方法 C.公式法 D.因式分解法2.用16米長的鋁制材料制成一個矩形窗框,使它的面積為9平方米,若設(shè)它的一邊長為x,根據(jù)題意可列出關(guān)于x的方程為()A. B. C. D.3.如圖,正方形ABCD和正方形CGFE的頂點C,D,E在同一條直線上,頂點B,C,G在同一條直線上.O是EG的中點,∠EGC的平分線GH過點D,交BE于點H,連接FH交EG于點M,連接OH.以下四個結(jié)論:①GH⊥BE;②△EHM∽△GHF;③﹣1;④=2﹣,其中正確的結(jié)論是()A.①②③ B.①②④ C.①③④ D.②③④4.已知拋物線y=x2+bx+c的部分圖象如圖所示,若y<0,則x的取值范圍是()A.﹣1<x<4 B.﹣1<x<3 C.x<﹣1或x>4 D.x<﹣1或x>35.已知x=-1是方程2x2+ax-5=0的一個根,則a的值為()A.-3 B.-4 C.3 D.76.如何求tan75°的值?按下列方法作圖可解決問題,如圖,在Rt△ABC中,AC=k,∠ACB=90°,∠ABC=30°,延長CB至點M,在射線BM上截取線段BD,使BD=AB,連接AD,依據(jù)此圖可求得tan75°的值為()A. B. C. D.7.如圖,A,B是反比例函數(shù)y=圖象上兩點,AC⊥y軸于C,BD⊥x軸于D,AC=BD=OC,S四邊形ABCD=9,則k值為()A.8 B.10 C.12 D.1.8.如圖,平行四邊形ABCD的對角線AC與BD相交于點O,設(shè),,下列式子中正確的是()A. B.;C. D..9.如圖,PA,PB分別與⊙O相切于A,B兩點,若∠C=65°,則∠P的度數(shù)為()A.65° B.130° C.50° D.100°10.如圖,矩形EFGO的兩邊在坐標軸上,點O為平面直角坐標系的原點,以y軸上的某一點為位似中心,作位似圖形ABCD,且點B,F(xiàn)的坐標分別為(﹣4,4),(2,1),則位似中心的坐標為()A.(0,3) B.(0,2.5) C.(0,2) D.(0,1.5)11.關(guān)于x的一元二次方程有兩個不相等的實數(shù)根,則a的取值范圍是()A.a(chǎn)>-1 B. C. D.a(chǎn)>-1且12.如圖,圓O是Rt△ABC的外接圓,∠ACB=90°,∠A=25°,過點C作圓O的切線,交AB的延長線于點D,則∠D的度數(shù)是()A.25° B.40° C.50° D.65°二、填空題(每題4分,共24分)13.如圖,是的直徑,點和點是上位于直徑兩側(cè)的點,連結(jié),,,,若的半徑是,,則的值是_____________.14.如圖,在□ABCD中,E、F分別是AD、CD的中點,EF與BD相交于點M,若△DEM的面積為1,則□ABCD的面積為________.15.做任意拋擲一只紙杯的重復(fù)實驗,部分數(shù)據(jù)如下表拋擲次數(shù)50100500800150030005000杯口朝上的頻率0.10.150.20.210.220.220.22根據(jù)上表,可估計任意拋擲一只紙杯,杯口朝上的概率約為__________.16.已知關(guān)于的方程有兩個不相等的實數(shù)根,則的取值范圍是__________.17.已知圓錐的側(cè)面積為16πcm2,圓錐的母線長8cm,則其底面半徑為_____cm.18.如圖,AD,BC相交于點O,AB∥CD.若AB=2,CD=3,則△ABO與△DCO的面積之比為_____.三、解答題(共78分)19.(8分)解方程(1)x2+4x﹣3=0(用配方法)(2)3x(2x+3)=4x+620.(8分)某籃球隊對隊員進行定點投籃測試,每人每天投籃10次,現(xiàn)對甲、乙兩名隊員在五天中進球數(shù)(單位:個)進行統(tǒng)計,結(jié)果如下:甲1061068乙79789經(jīng)過計算,甲進球的平均數(shù)為8,方差為3.2.(1)求乙進球的平均數(shù)和方差;(2)如果綜合考慮平均成績和成績穩(wěn)定性兩方面的因素,從甲、乙兩名隊員中選出一人去參加定點投籃比賽,應(yīng)選誰?為什么?21.(8分)已知:如圖,在半徑為的中,、是兩條直徑,為的中點,的延長線交于點,且,連接。.(1)求證:;(2)求的長.22.(10分)如圖,AB為⊙O的弦,若OA⊥OD,AB、OD相交于點C,且CD=BD.(1)判定BD與⊙O的位置關(guān)系,并證明你的結(jié)論;(2)當OA=3,OC=1時,求線段BD的長.23.(10分)如圖1,為等腰三角形,是底邊的中點,腰與相切于點,底交于點,.(1)求證:是的切線;(2)如圖2,連接,交于點,點是弧的中點,若,,求的半徑.24.(10分)如圖,已知Rt△ABC中,∠ABC=90°,先把△ABC繞點B順時針旋轉(zhuǎn)90°至△DBE后,再把△ABC沿射線AB平移至△FEG,DE、FG相交于點H.判斷線段DE、FG的位置關(guān)系,并說明理由.25.(12分)下面是小東設(shè)計的“過圓外一點作這個圓的兩條切線”的尺規(guī)作圖過程.已知:⊙O及⊙O外一點P.求作:直線PA和直線PB,使PA切⊙O于點A,PB切⊙O于點B.作法:如圖,①連接OP,分別以點O和點P為圓心,大于OP的同樣長為半徑作弧,兩弧分別交于點M,N;②連接MN,交OP于點Q,再以點Q為圓心,OQ的長為半徑作弧,交⊙O于點A和點B;③作直線PA和直線PB.所以直線PA和PB就是所求作的直線.根據(jù)小東設(shè)計的尺規(guī)作圖過程,(1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)(2)完成下面的證明.證明:∵OP是⊙Q的直徑,∴∠OAP=∠OBP=________°()(填推理的依據(jù)).∴PA⊥OA,PB⊥OB.∵OA,OB為⊙O的半徑,∴PA,PB是⊙O的切線.26.已知拋物線y=ax2+bx+c經(jīng)過A(-1,0)、B(3,0)、C(0,3)三點,直線l是拋物線的對稱軸.(1)求拋物線的函數(shù)關(guān)系式;(2)設(shè)點P是直線l上的一個動點,當△PAC的周長最小時,求點P的坐標;(3)在直線l上是否存在點M,使△MAC為等腰三角形?若存在,直接寫出所有符合條件的點M的坐標;若不存在,請說明理由.
參考答案一、選擇題(每題4分,共48分)1、D【解析】根據(jù)方程含有公因式,即可判定最適當?shù)姆椒ㄊ且蚴椒纸夥?【詳解】由已知,得方程含有公因式,∴最適當?shù)姆椒ㄊ且蚴椒纸夥ü蔬x:D.【點睛】此題主要考查一元二次方程解法的選擇,熟練掌握,即可解題.2、B【分析】一邊長為x米,則另外一邊長為:8-x,根據(jù)它的面積為9平方米,即可列出方程式.【詳解】一邊長為x米,則另外一邊長為:8-x,
由題意得:x(8-x)=9,
故選:B.【點睛】此題考查由實際問題抽相出一元二次方程,解題的關(guān)鍵讀懂題意列出方程式.3、A【分析】由四邊形ABCD和四邊形CGFE是正方形,得出△BCE≌△DCG,推出∠BEC+∠HDE=90°,從而得GH⊥BE;由GH是∠EGC的平分線,得出△BGH≌△EGH,再由O是EG的中點,利用中位線定理,得HO∥BG且HO=BG;由△EHG是直角三角形,因為O為EG的中點,所以O(shè)H=OG=OE,得出點H在正方形CGFE的外接圓上,根據(jù)圓周角定理得出∠FHG=∠EHF=∠EGF=45°,∠HEG=∠HFG,從而證得△EHM∽△GHF;設(shè)HN=a,則BC=2a,設(shè)正方形ECGF的邊長是2b,則NC=b,CD=2a,由HO∥BG,得出△DHN∽△DGC,即可得出,得到,即a2+2ab-b2=0,從而求得,設(shè)正方形ECGF的邊長是2b,則EG=2b,得到HO=b,通過證得△MHO∽△MFE,得到,進而得到,進一步得到.【詳解】解:如圖,∵四邊形ABCD和四邊形CGFE是正方形,∴BC=CD,CE=CG,∠BCE=∠DCG,在△BCE和△DCG中,∴△BCE≌△DCG(SAS),∴∠BEC=∠BGH,∵∠BGH+∠CDG=90°,∠CDG=∠HDE,∴∠BEC+∠HDE=90°,∴GH⊥BE.故①正確;∵△EHG是直角三角形,O為EG的中點,∴OH=OG=OE,∴點H在正方形CGFE的外接圓上,∵EF=FG,∴∠FHG=∠EHF=∠EGF=45°,∠HEG=∠HFG,∴△EHM∽△GHF,故②正確;∵△BGH≌△EGH,∴BH=EH,又∵O是EG的中點,∴HO∥BG,∴△DHN∽△DGC,設(shè)EC和OH相交于點N.設(shè)HN=a,則BC=2a,設(shè)正方形ECGF的邊長是2b,則NC=b,CD=2a,即a2+2ab﹣b2=0,解得:a=b=(﹣1+)b,或a=(﹣1﹣)b(舍去),故③正確;∵△BGH≌△EGH,∴EG=BG,∵HO是△EBG的中位線,∴HO=BG,∴HO=EG,設(shè)正方形ECGF的邊長是2b,∴EG=2b,∴HO=b,∵OH∥BG,CG∥EF,∴OH∥EF,∴△MHO△MFE,∴,∴EM=OM,∴,∴∵EO=GO,∴S△HOE=S△HOG,∴故④錯誤,故選A.【點睛】本題考查了正方形的性質(zhì),以及全等三角形的判定與性質(zhì),相似三角形的判定與性質(zhì),正確求得兩個三角形的邊長的比是解決本題的關(guān)鍵.4、B【解析】試題分析:觀察圖象可知,拋物線y=x2+bx+c與x軸的交點的橫坐標分別為(﹣1,0)、(1,0),所以當y<0時,x的取值范圍正好在兩交點之間,即﹣1<x<1.故選B.考點:二次函數(shù)的圖象.1061445、A【解析】把x=-1代入方程計算即可求出a的值.【詳解】解:把x=-1代入方程得:2-a-5=0,
解得:a=-1.
故選A.【點睛】此題考查了一元二次方程的解,方程的解即為能使方程左右兩邊相等的未知數(shù)的值.6、B【解析】在直角三角形ABC中,利用30度所對的直角邊等于斜邊的一半表示出AB的長,再利用勾股定理求出BC的長,由CB+BD求出CD的長,在直角三角形ACD中,利用銳角三角函數(shù)定義求出所求即可.【詳解】在Rt△ABC中,AC=k,∠ACB=90°,∠ABC=30°,∴AB=BD=2k,∠BAD=∠BDA=15°,BC=k,∴∠CAD=∠CAB+∠BAD=75°,在Rt△ACD中,CD=CB+BD=k+2k,則tan75°=tan∠CAD===2+,故選B【點睛】本題考查了解直角三角形,熟練掌握三角函數(shù)是解題的關(guān)鍵.7、B【分析】分別延長CA、DB,它們相交于E,如圖,設(shè)AC=t,則BD=t,OC=5t,根據(jù)反比例函數(shù)圖象上點的坐標特征得到k=OD?t=t?5t,則OD=5t,所以B點坐標為(5t,t),于是AE=CE﹣CA=4t,BE=DE﹣BD=4t,再利用S四邊形ABCD=S△ECD﹣S△EAB得到?5t?5t﹣?4t?4t=9,解得t2=2,然后根據(jù)k=t?5t進行計算.【詳解】解:分別延長CA、DB,它們相交于E,如圖,設(shè)AC=t,則BD=t,OC=5t,∵A,B是反比例函數(shù)y=圖象上兩點,∴k=OD?t=t?5t,∴OD=5t,∴B點坐標為(5t,t),∴AE=CE﹣CA=4t,BE=DE﹣BD=4t,∵S四邊形ABCD=S△ECD﹣S△EAB,∴?5t?5t﹣?4t?4t=9,∴t2=2,∴k=t?5t=5t2=5×2=2.故選:B.【點睛】本題考查了比例系數(shù)k的幾何意義:在反比例函數(shù)y=xk圖象中任取一點,過這一個點向x軸和y軸分別作垂線,與坐標軸圍成的矩形的面積是定值|k|.8、C【分析】由平行四邊形性質(zhì),得,由三角形法則,得到,代入計算即可得到答案.【詳解】解:∵四邊形ABCD是平行四邊形,∴,∵,,在△OAB中,有,∴,∴;故選擇:C.【點睛】此題考查了平面向量的知識以及平行四邊形的性質(zhì).注意掌握平行四邊形法則與三角形法則的應(yīng)用是解此題的關(guān)鍵.9、C【解析】試題分析:∵PA、PB是⊙O的切線,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=130°,則∠P=360°﹣(90°+90°+130°)=50°.故選C.考點:切線的性質(zhì).10、C【解析】如圖,連接BF交y軸于P,
∵四邊形ABCD和四邊形EFGO是矩形,點B,F(xiàn)的坐標分別為(-4,4),(2,1),
∴點C的坐標為(0,4),點G的坐標為(0,1),
∴CG=3,
∵BC∥GF,∴,∴GP=1,PC=2,
∴點P的坐標為(0,2),
故選C.【點睛】本題考查的是位似變換的概念、坐標與圖形性質(zhì),掌握如果兩個圖形不僅是相似圖形,而且對應(yīng)頂點的連線相交于一點,對應(yīng)邊互相平行,那么這樣的兩個圖形叫做位似圖形,這個點叫做位似中心是解題的關(guān)鍵.11、D【解析】利用一元二次方程的定義及根的判別式列不等式a≠1且△=22﹣4a×(﹣1)>1,從而求解.【詳解】解:根據(jù)題意得:a≠1且△=22﹣4a×(﹣1)>1,解得:a>﹣1且a≠1.故選D.【點睛】本題考查了根的判別式:一元二次方程ax2+bx+c=1(a≠1)的根與△=b2﹣4ac有如下關(guān)系:當△>1時,方程有兩個不相等的兩個實數(shù)根;當△=1時,方程有兩個相等的兩個實數(shù)根;當△<1時,方程無實數(shù)根.12、B【分析】首先連接OC,由∠A=25°,可求得∠BOC的度數(shù),由CD是圓O的切線,可得OC⊥CD,繼而求得答案.【詳解】連接OC,∵圓O是Rt△ABC的外接圓,∠ACB=90°,∴AB是直徑,∵∠A=25°,∴∠BOC=2∠A=50°,∵CD是圓O的切線,∴OC⊥CD,∴∠D=90°-∠BOC=40°.故選B.二、填空題(每題4分,共24分)13、【分析】根據(jù)題意可知∠ADB=90°,∠ACD=∠ABD,求出∠ABD的正弦就是∠ACD的正弦值.【詳解】解:∵是的直徑,∴∠ADB=90°∴∠ACD=∠ABD∵的半徑是,,∴故答案為:【點睛】本題考查的是銳角三角函數(shù)值.14、16【詳解】延長EF交BC的延長線與H,在平行四邊形ABCD中,∵AD=BC,AD∥BC∴△DEF∽△CHF,△DEM∽△BHM∴,∵F是CD的中點∴DF=CF∴DE=CH∵E是AD中點∴AD=2DE∴BC=2DE∴BC=2CH∴BH=3CH∵∴∴∴∴∴∴∴∵四邊形ABCD是平行四邊形∴故答案為:16.15、0.1【解析】觀察表格的數(shù)據(jù)可以得到杯口朝上的頻率,然后用頻率估計概率即可求解.【詳解】解:依題意得杯口朝上頻率逐漸穩(wěn)定在0.1左右,
估計任意拋擲一只紙杯,杯口朝上的概率約為0.1.
故答案為:0.1.【點睛】本題考查利用頻率估計概率,首先通過實驗得到事件的頻率,然后用頻率估計概率即可解決問題.16、且【分析】根據(jù)根的判別式和一元一次方程的定義得到關(guān)于的不等式,求出的取值即可.【詳解】關(guān)于的一元二次方程有兩個不相等的實數(shù)根,∵,∴且,
解得:且,
故答案為:且.【點睛】本題考查了根的判別式和一元二次方程的定義,能根據(jù)題意得出關(guān)于的不等式是解此題的關(guān)鍵.17、1【解析】圓錐的底面圓的半徑為r,利用圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長和扇形面積公式得到×1π×r×8=16π,解得r=1,然后解關(guān)于r的方程即可.【詳解】解:設(shè)圓錐的底面圓的半徑為r,根據(jù)題意得×1π×r×8=16π,解得r=1,所以圓錐的底面圓的半徑為1cm.故答案為1.【點睛】本題考查了圓錐的計算:圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.18、【分析】由AB∥CD可得出∠A=∠D,∠B=∠C,進而可得出△ABO∽△DCO,再利用相似三角形的性質(zhì)可求出△ABO與△DCO的面積之比.【詳解】∵AB∥CD,∴∠A=∠D,∠B=∠C,∴△ABO∽△DCO,∴.故答案為:.【點睛】此題考查相似三角形的判定及性質(zhì),相似三角形的面積的比等于相似比的平方.三、解答題(共78分)19、(1)x1=﹣2+,x2=﹣2﹣;(2)x1=,x2=﹣.【解析】(1)原式利用配方法求出解即可;(2)原式整理后,利用因式分解法求出解即可.【詳解】(1)方程整理得:x2+4x=3,配方得:x2+4x+4=7,即(x+2)2=7,開方得:x+2=±,解得:x1=﹣2+,x2=﹣2﹣;(2)方程整理得:3x(2x+3)﹣2(2x+3)=0,分解因式得:(3x﹣2)(2x+3)=0,可得3x﹣2=0或2x+3=0,解得:x1=,x2=﹣.【點睛】此題考查了解一元二次方程﹣因式分解法,以及配方法,熟練掌握各種解法是解本題的關(guān)鍵.20、(1)乙平均數(shù)為8,方差為0.8;(2)乙.【分析】(1)根據(jù)平均數(shù)、方差的計算公式計算即可;(2)根據(jù)平均數(shù)相同時,方差越大,波動越大,成績越不穩(wěn)定;方差越小,波動越小,成績越穩(wěn)定進行解答.【詳解】(1)乙進球的平均數(shù)為:(7+9+7+8+9)÷5=8,乙進球的方差為:[(7﹣8)2+(9﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2]=0.8;(2)∵二人的平均數(shù)相同,而S甲2=3.2,S乙2=0.8,∴S甲2>S乙2,∴乙的波動較小,成績更穩(wěn)定,∴應(yīng)選乙去參加定點投籃比賽.【點睛】本題考查了方差的定義:一般地設(shè)n個數(shù)據(jù),x1,x2,…xn的平均數(shù)為,則方差S2[(x1)2+(x2)2+…+(xn)2],它反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立.也考查了平均數(shù).21、(1)證明見解析;(1)EM=4.【解析】(1)連接A、C,E、B點,那么只需要求出△AMC和△EMB相似,即可求出結(jié)論,根據(jù)圓周角定理可推出它們的對應(yīng)角相等,即可得△AMC∽△EMB;(1)根據(jù)圓周角定理,結(jié)合勾股定理,可以推出EC的長度,根據(jù)已知條件推出AM、BM的長度,然后結(jié)合(1)的結(jié)論,很容易就可求出EM的長度.【詳解】(1)連接AC、EB.∵∠A=∠BEC,∠B=∠ACM,∴△AMC∽△EMB,∴,∴AM?BM=EM?CM;(1)∵DC是⊙O的直徑,∴∠DEC=90°,∴DE1+EC1=DC1.∵DE,CD=8,且EC為正數(shù),∴EC=2.∵M為OB的中點,∴BM=1,AM=3.∵AM?BM=EM?CM=EM?(EC﹣EM)=EM?(2﹣EM)=11,且EM>MC,∴EM=4.【點睛】本題考查了相似三角形的判定和性質(zhì)、圓周角定理、勾股定理的知識點,解答本題的關(guān)鍵是根據(jù)已知條件和圖形作輔助線.22、(1)見解析;(2)1【分析】(1)連接OB,由BD=CD,利用等邊對等角得到∠DCB=∠DBC,再由AO垂直于OD,得到三角形AOC為直角三角形,得到兩銳角互余,等量代換得到OB垂直于BD,即可得證;(2)設(shè)BD=x,則OD=x+1,在RT△OBD中,根據(jù)勾股定理得出32+x2=(x+1)2,通過解方程即可求得.【詳解】解:(1)證明:連接OB,∵OA=OB,DC=DB,∴∠A=∠ABO,∠DCB=∠DBC,∵AO⊥OD,∴∠AOC=90°,即∠A+∠ACO=90°,∵∠ACO=∠DCB=∠DBC,∴∠ABO+∠DBC=90°,即OB⊥BD,則BD為圓O的切線;(2)解:設(shè)BD=x,則OD=x+1,而OB=OA=3,在RT△OBD中,OB2+BD2=OD2,即32+x2=(x+1)2,解得x=1,∴線段BD的長是1.23、(1)證明見解析;(2)的半徑為2.1.【分析】(1)連接,,過作于點,根據(jù)三線合一可得,然后根據(jù)角平分線的性質(zhì)可得,然后根據(jù)切線的判定定理即可證出結(jié)論;(2)連接,過作于點,根據(jù)平行線的判定證出,證出,根據(jù)角平分線的性質(zhì)可得,然后利用HL證出,從而得出,設(shè)的半徑為,根據(jù)勾股定理列出方程即可求出結(jié)論.【詳解】(1)證明:如圖,連接,,過作于點.∵,是底邊的中點,∴,∵是的切線,∴,∴.∴是的切線;(2)解:如圖2,連接,過作于點.∵點是的中點,∴,∴∴,∴在和中,∴∴設(shè)的半徑為由勾股定理得:DK2+OK2=OD2即,解得:.∴的半徑為.【點睛】此題考查的是等腰三角形的性質(zhì)、角平分線的性質(zhì)、切線的判定及性質(zhì)、全等三角形的判定及性質(zhì)和勾股定理,掌握等腰三角形的性質(zhì)、角平分線的性質(zhì)、切線的判定及性質(zhì)、全等三角形的判定及性質(zhì)和勾股定理是解決此題的關(guān)鍵.24、見解析【分析】根據(jù)旋轉(zhuǎn)和平移可得∠DEB=∠ACB,∠GFE=∠A,再根據(jù)∠ABC=90°可得∠A+∠ACB=90°,進而得到∠DEB+∠GFE=90°,從而得到DE、FG的位置關(guān)系是垂直.【詳解】解:DE⊥FG.理由:由題知:Rt△ABC≌Rt△BDE≌Rt△FEG∴∠A=∠BDE=∠GFE∵∠BDE+∠BED=90°∴∠GFE+∠BED=90°,即DE⊥FG.25、(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版房屋租賃合同委托書
- 二零二五個人所得稅贍養(yǎng)老人分攤協(xié)議
- 多方合伙經(jīng)營合同二零二五年
- 2025年中小學教師資格面試規(guī)范試題及答案
- 順豐公司內(nèi)部管理制度
- 財務(wù)規(guī)定考勤管理制度
- 遵守各項規(guī)章管理制度
- 營銷企業(yè)預(yù)算管理制度
- 財務(wù)信息報送管理制度
- 公交自營車管理制度
- GB 18434-2022油船在港作業(yè)安全要求
- 江蘇省地震安全性評價收費標準
- 鑒賞家-教學講解課件
- 引水隧洞洞室開挖及支護施工方案
- 房地產(chǎn)案例:商業(yè)街-鐵像寺水街
- 火電廠鍋爐燃燒器結(jié)構(gòu)圖
- 全過程工程咨詢服務(wù)大綱
- 《認識三角形》第2課時示范公開課教學課件【七年級數(shù)學下冊北師大】
- YY/T 1610-2018麻醉和呼吸設(shè)備醫(yī)用氧氣濕化器
- GB/T 32788.6-2016預(yù)浸料性能試驗方法第6部分:單位面積質(zhì)量的測定
- 地球概論第四章
評論
0/150
提交評論