版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
課題:第十一講反比例函數(shù)教學(xué)目標:1.理解反比例函數(shù)的概念,會求反比例函數(shù)解析式;2.理解并掌握反比例函數(shù)圖象與性質(zhì),能運用反比例函數(shù)圖象與性質(zhì)解決有關(guān)函數(shù)值比較大小問題;3.會用反比例函數(shù)解決某些實際問題,體會函數(shù)的應(yīng)用價值;4.在解決問題過程中,體會數(shù)形結(jié)合思想在解決函數(shù)問題中作用,提高利用函數(shù)思想探究問題的積極性.教學(xué)重點:反比例函數(shù)的圖象性質(zhì)與數(shù)形結(jié)合思想.教學(xué)難點:反比例函數(shù)增減性的理解,反比例函數(shù)的應(yīng)用.※棗考解讀:考點考綱要求年份題型分值預(yù)測熱度反比例函數(shù)的意義了解★反比例函數(shù)的表達式掌握2012解答題5分★★★2014解答題5分反比例函數(shù)的圖像和性質(zhì)掌握2010選擇題3分★★★反比例函數(shù)的應(yīng)用掌握2012解答題5分★★★★2014解答題5分教法與學(xué)法指導(dǎo):本節(jié)課主要采用題組復(fù)習(xí)學(xué)生通過自主學(xué)習(xí),小組合作,展開互動性學(xué)習(xí),讓學(xué)生體會到學(xué)習(xí)數(shù)學(xué)的成就感.把全班分成6個小組(每小組6人)進行小組競學(xué),合作交流,培養(yǎng)學(xué)生的探究能力與合作交流意識,提高分析問題、解決問題的能力.教學(xué)準備:教師準備導(dǎo)學(xué)案、多媒體課件學(xué)生準備:(提前兩天布置)預(yù)習(xí)新課程初中復(fù)習(xí)指導(dǎo)叢書(棗莊版)50~51頁反比例函數(shù),完成填空;②完成新課程初中復(fù)習(xí)指導(dǎo)叢書(棗莊版)52~54頁反比例函數(shù)的強化訓(xùn)練.設(shè)計意圖:意在讓學(xué)生提前預(yù)習(xí)(棗莊版初中復(fù)習(xí)指導(dǎo)叢書),提前做課后強化訓(xùn)練(棗莊版初中復(fù)習(xí)指導(dǎo)叢書),提高課堂教學(xué)效率,拒絕低效課堂.活動注意事項:落實“三講三不講”,即“學(xué)生不看書(棗莊版初中復(fù)習(xí)指導(dǎo)叢書)不講;學(xué)生不做習(xí)題(棗莊版初中復(fù)習(xí)指導(dǎo)叢書)不講,學(xué)生自己能學(xué)會的不講”,只規(guī)范解題過程;稍加點撥學(xué)生就會做的習(xí)題,教師不講,只啟發(fā)誘導(dǎo).總之,向課堂45分鐘要質(zhì)量,拒絕低效課堂.教學(xué)過程:一、中考命題分析【師】反比例函數(shù)是中考的重點內(nèi)容之一,近年來的反比例函數(shù)考題豐富多彩,試題涉及到了反比例函數(shù)性質(zhì)的所有方面,尤其重視反比例函數(shù)與其他知識的聯(lián)系,綜合性較強,試題主要考查反比例函數(shù)的圖象、性質(zhì)、應(yīng)用以及反比例函數(shù)與一次函數(shù)、代數(shù)、幾何知識的綜合,同時注重數(shù)學(xué)思想方法的考查,如數(shù)形結(jié)合思想、分類討論思想等.本專題內(nèi)容在中考試卷中所占的比例約為6﹪.常以選擇題、填空題的形式考查反比例函數(shù)的圖象與性質(zhì)等基礎(chǔ)知識,以解答題、探究題的形式考查綜合應(yīng)用反比例函數(shù)等知識解題的能力.所以在備考時,要深入探究反比例函數(shù)圖象與性質(zhì)的特殊性,掌握分析、解決反比例函數(shù)問題的基本方法,并重視與其他數(shù)學(xué)知識的聯(lián)系,提高解決問題的能力及探究能力.設(shè)計意圖:意在讓學(xué)生了解中考動向,對中考的熱點、難點以及題型等做到心中有數(shù).在復(fù)習(xí)時做到有的放矢.活動注意事項:教師必須對近年的中考試題深入探究,才能做到有的放矢.二、考點聚焦考點一:反比例函數(shù)的概念概念定義:函數(shù)(是常數(shù),)叫做反比例函數(shù).反比例函數(shù)自變量的取值范圍是.反比例函數(shù)的解析式的三種形式:eq\o\ac(○,1);eq\o\ac(○,2);eq\o\ac(○,3).典型例題例1(2012?濱州)下列函數(shù):eq\o\ac(○,1)eq\o\ac(○,2)eq\o\ac(○,3)eq\o\ac(○,4)eq\o\ac(○,5)eq\o\ac(○,6)中,是的反比例函數(shù)的有(填序號).處理方式:可讓學(xué)生先自己獨立完成,然后再選代表進行解答.教師可最后進行適當點評.教師點評:此題主要考察了反比例函數(shù)的定義,關(guān)鍵是掌握反比例函數(shù)的定義:形如(是常數(shù),)叫做反比例函數(shù).對應(yīng)訓(xùn)練一:1.(2013?安順)若是反比例函數(shù),則的取值為() 任意實數(shù)考點二:反比例函數(shù)的圖象與性質(zhì)解析式的符號圖象OO所在象限函數(shù)圖象的兩個分支分別在第象限.函數(shù)圖象的兩個分支分別在第象限.性質(zhì)在每個象限內(nèi),隨的.在每個象限內(nèi),隨的.對稱性反比例函數(shù)的圖象既是軸對稱圖形,又是.典型例題例2(天水)已知函數(shù)的圖象如圖,以下結(jié)論:①;②在每個分支上隨的增大而增大;③若點、點在圖象上,則;④若點在圖象上,則點也在圖象上.其中正確的個數(shù)是().4個.3個.2個.1個處理方式:學(xué)生可適當在小組內(nèi)交流,然后選代表來解答.教師可參與到學(xué)生中去,聆聽學(xué)生的交流,以便知道學(xué)生掌握的情況.教師點撥:本題主要考查了反比例函數(shù)的圖象的性質(zhì)和一次函數(shù)圖象的性質(zhì),要掌握它們的性質(zhì)才能靈活解題.方法總結(jié):解決反比例函數(shù)題,一般采用數(shù)形結(jié)合的思想,同時注意增減性的條件是“在每個象限內(nèi)”.反比例函數(shù)是中心對稱圖形,故若在反比例函數(shù)圖象上,則也在反比例函數(shù)圖象上.對應(yīng)訓(xùn)練二:1.(泉州)在同一平面直角坐標系中,函數(shù)與的圖象可能是()....2.(常州)已知反比例函數(shù)的圖象經(jīng)過點,則這個函數(shù)的圖象位于().第二,三象限.第一,三象限.第三,四象限.第二,四象限3.(懷化)已知一次函數(shù)的圖象如圖,那么正比例函數(shù)和反比例函數(shù)在同一坐標系中的圖象大致是()....考點三:反比例函數(shù)中的幾何意義的幾何意義反比例函數(shù)圖象上的點具有兩數(shù)之積為這一特點,則過雙曲線上任意一點,向兩坐標軸作垂線,兩條垂線與坐標軸圍成的矩形的面積為常數(shù).結(jié)論的推導(dǎo)如圖,過雙曲線上任意一點作軸、軸的垂線,所得的矩形的面積==.,.典型例題例3(綏化)如圖,過點作直線與雙曲線交于兩點,過點作軸于點,作軸于點.在x軸上分別取點,使點在同一條直線上,且.設(shè)圖中矩形的面積為,的面積為,則的數(shù)量關(guān)系是().S1=S2.2S1=S2.3S1=S2.4S1=S2處理方式:可讓學(xué)生在小組中討論交流,然后進行解答.教師點評:本題考查反比例函數(shù)系數(shù)的幾何意義,過雙曲線上的任意一點分別向兩條坐標軸作垂線,與坐標軸圍成矩形的面積就等于的絕對值.本知識點是中考的重要考點,同學(xué)們應(yīng)高度關(guān)注.方法總結(jié):此題主要考查反比例函數(shù)的比例系數(shù)的幾何意義,關(guān)于原點對稱軸的點的特征.此題也可利用三角形相似,面積比等于相似比的平方求解.對應(yīng)訓(xùn)練三:1.(黔東南州)如圖,正比例函數(shù)與反比例函數(shù)的圖象相交于兩點,軸于點,則的面積為().1.2..2.(東營)如圖,函數(shù)和的圖象分別是和.設(shè)點在上,軸,垂足為,交于點,軸,垂足為,交于點B,則的面積為.考點四:反比例函數(shù)的應(yīng)用反比例函數(shù)解析式的確定確定反比例函數(shù)解析式的方法仍是待定系數(shù)法:1.根據(jù)兩變量之間的反比例函數(shù)關(guān)系設(shè);代入圖象上一個點的坐標,即的一對對應(yīng)值,求出的值;寫出解析式.綜合運用反比例函數(shù)的應(yīng)用是指運用反比例函數(shù)的有關(guān)概念、性質(zhì)去解決實際問題,它要求通過對題目的閱讀理解,抽象出實際問題中的反比例函數(shù)關(guān)系,將文字轉(zhuǎn)化為數(shù)學(xué)語言,再利用反比例函數(shù)的思想方法解決實際問題.典型例題例4(威海)已知反比例函數(shù)(為常數(shù))的圖象在一、三象限.(1)求的取值范圍;(2)如圖,若該反比例函數(shù)的圖象經(jīng)過的頂點,點、的坐標分別為(0,3),(﹣2,0).①求出函數(shù)解析式;②設(shè)點是該反比例函數(shù)圖象上的一點,若,則點的坐標為;若以、、為頂點的三角形是等腰三角形,則滿足條件的點的個數(shù)為個.處理方式:讓學(xué)生在小組內(nèi)積極討論交流,教師可參與到學(xué)生中去,對有疑問的同學(xué)可適當點撥,然后由學(xué)生代表進行解答.考點:反比例函數(shù)的綜合題,等腰三角形的性質(zhì),平行四邊形的性質(zhì).教師點評:本題考查了反比例函數(shù)的綜合題,掌握反比例函數(shù)圖象的性質(zhì)和其圖象上點坐標特征、平行四邊形性質(zhì)和等腰三角形的性質(zhì),運用分類討論的思想解決數(shù)學(xué)問題.方法總結(jié):求函數(shù)解析式,一般先根據(jù)題意,找出或求出圖象上的相關(guān)點,用待定系數(shù)法列方程求解.對應(yīng)訓(xùn)練四:1.(遂寧)已知:如圖,反比例函數(shù)的圖象與一次函數(shù)的圖象交于點、點.(1)求一次函數(shù)和反比例函數(shù)的解析式;(2)求的面積;(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量的取值范圍.設(shè)計意圖:“授人以魚,不如授人以漁”,將反比例函數(shù)按??嫉牡湫皖}型進行總結(jié),并配以相應(yīng)的對應(yīng)練習(xí),使學(xué)生對每種題型能夠熟練掌握,總結(jié)歸納其解題方法,并達到舉一反三的目的.在整個過程中引導(dǎo)學(xué)生開展小組競學(xué),積極探究解決問題的方法,培養(yǎng)學(xué)生創(chuàng)造性解決問題的思維意識和能力.提高學(xué)習(xí)效率.三、總結(jié)收獲【師】談?wù)勀惚竟?jié)的收獲?還有什么疑惑?(學(xué)生暢所欲言)設(shè)計意圖:學(xué)生自由發(fā)言,可以相互補充;學(xué)生開心暢談,無拘無束;談收獲,談困惑;交流解題思路,留給思考空間.四、達標檢測1.(常州)已知反比例函數(shù)的圖象經(jīng)過點,則這個函數(shù)的圖象位于().第二,三象限.第一,三象限.第三,四象限.第二,四象限2.(蘭州)若反比例函數(shù)的圖象位于第二、四象限,則的取值可以是().0.1.2.以上都不是3.(重慶)如圖,反比例函數(shù)在第二象限的圖象上有兩點,它們的橫坐標分別為﹣1,﹣3,直線與軸交于點,則的面積為().8.10.12.244.(湘潭)如圖,A、B兩點在雙曲線上,分別經(jīng)過兩點向軸作垂線段,已知,則()A.3B.4C.5D.65.(貴陽)若反比例函數(shù)的圖象在其每個象限內(nèi),隨的增大而增大,則的值可以是.(寫出一個符合條件的值即可)6.(臨沂)如圖,反比例函數(shù)的圖象經(jīng)過的頂點為斜邊的中點,則過點的反比例函數(shù)的解析式為.7.(天水)如圖,點是反比例函數(shù)的圖象上﹣點,過點作軸,垂足為點,線段交反比例函數(shù)的圖象于點,則的為.8.(河南)如圖,在直角梯形中,∥,,點的坐標分別為(5,0),(2,6),點為上一點,且,雙曲線經(jīng)過點,交于點.(1)求雙曲線的解析式;(2)求四邊形的面積.設(shè)計意圖:要求學(xué)生在10分鐘內(nèi)完成,規(guī)定時間和內(nèi)容,一方面可以了解學(xué)生對本節(jié)課所復(fù)習(xí)內(nèi)容的掌握情況,同時也可培養(yǎng)學(xué)生解決問題的能力.并且讓不同的學(xué)生有不同的發(fā)展,使每個學(xué)生都學(xué)得好,能力最大限度的得到提高.五、布置作業(yè)1、基礎(chǔ)題:復(fù)習(xí)叢書中的習(xí)題.2、選做題:數(shù)學(xué)“中考備戰(zhàn)”中反比例函數(shù)的部分.板書設(shè)計第十一講反比例函數(shù)一、反比例函數(shù)的知識要點1.反比例函數(shù)的概念:2.反比例函數(shù)的圖象和性質(zhì)3.反比例函數(shù)中值的確定及其幾何意義應(yīng)用4.反比例函數(shù)的應(yīng)用二、例題解析1.2.3.4三、學(xué)生展示
數(shù)學(xué)科第六單元教案課題:反比例函數(shù)教學(xué)目標(三維)知識與技能從現(xiàn)實情境和學(xué)生已有的知識經(jīng)驗出發(fā),討論兩個變量之間的相互關(guān)系,加深對函數(shù)概念的理解。過程與方法體會數(shù)學(xué)從實踐中來又到實際中去的研究、應(yīng)用過程。培養(yǎng)學(xué)生的觀察能力,及數(shù)學(xué)地發(fā)現(xiàn)問題,解決問題的能力。情感態(tài)度與價值觀通過小組交流,積累數(shù)學(xué)活動經(jīng)驗。培養(yǎng)學(xué)生積極的情感,態(tài)度。學(xué)會和別人溝通。教學(xué)重點領(lǐng)悟用函數(shù)觀點解決某些實際問題的基本思路。教學(xué)難點經(jīng)歷抽象反比例函數(shù)概念的過程,領(lǐng)會反比例函數(shù)的意義,理解反比例函數(shù)的概念??键c分析課型:新授課課時:第1課時教學(xué)方法:教學(xué)過程個性化設(shè)計第一環(huán)節(jié):鞏固復(fù)習(xí),引入新課問題1:若每天背10個單詞,那么所掌握的單詞總y(個)與時間x(天)之間的關(guān)系函數(shù)式為。問題2:小明原來掌握了150個單詞,以后每天背10個單詞,那么他所掌握單詞總量y(個)與時間x(天)之間的關(guān)系式為。問題3:九年級英語全冊約有單詞1200個,小明同學(xué)計劃用x(天)全部掌握,那么平均每天需要記憶的單詞量y(個)與時間x(天)之間的關(guān)系式為。問題4:一個面積為6400㎡的長方形,那么花壇的長a(m)與寬b(m)之間的關(guān)系式為。問題5:京滬高速公路長1262km,汽車沿京滬高速公路從上海駛往北京,汽車行完全程所需的時間t(h)與行駛的平均速度v(km/h)之間的函數(shù)關(guān)系式為。教師和學(xué)生一起探索總結(jié)出反比例函數(shù)的概念:一般地,如果兩個變量x,y之間的關(guān)系可以表示成:(k為常數(shù),K≠0)的形式,那么稱y是x的反比例函數(shù)。第二環(huán)節(jié):基礎(chǔ)訓(xùn)練,例題精講檢測練習(xí)下列函數(shù)中,x均為自變量,那么哪些y是x的反比例函數(shù)?k值是多少?(1)y=-3x;(3)xy=0.4; 例:y是x的反比例函數(shù),下圖給出了x與y的一些值:x-3-2-1
y
2-1①求出這個反比例函數(shù)的表達式;②根據(jù)函數(shù)表達式完成上表。教師巡視,個別輔導(dǎo),學(xué)生完畢教師給予評估。第三環(huán)節(jié):拓展應(yīng)用,學(xué)科互聯(lián)例1:電流I、電阻R、電壓U之間滿足關(guān)系式U=IR。在照明電路中,正常電壓U=220V。(1)求I與R之間的函數(shù)關(guān)系式?(2)變量I是R的反比例函數(shù)嗎?(3)利用寫出的關(guān)系式完成下表:R(?)2060
I(A)
2.2例2:在某一電路中,保持電壓U(伏)不變,電流I(安)是電阻R(歐)的反比例函數(shù),當電阻R=5歐時,電流I=2安。(1)求I與R之間的函數(shù)關(guān)系式。(2)當電流I=0.5安時,求電阻R的值。第四環(huán)節(jié):實踐探究,互動交流問題1:關(guān)系式xy+4=0中y是x的反比例函數(shù)嗎?若是,相應(yīng)的k值等于多少?若不是,請說明理由。問題2:若是反比例函數(shù),則m應(yīng)滿足的條件是.問題3:函數(shù)關(guān)系式可以表示許多生活中變量之間的關(guān)系,你能舉出一些這樣的實際例子嗎?問題4:若是關(guān)于x的反比例函數(shù),確定m的值,并求其函數(shù)關(guān)系式。第五環(huán)節(jié):感悟收獲,師生小結(jié)(1)通過本節(jié)課的學(xué)習(xí),你有哪些收獲?(2)你還存在什么疑問?強調(diào)在理解概念時要注意:①常數(shù)K≠0;②自變量x不能為零(因為分母為0時,該式?jīng)]意義);③當寫為時注意x的指數(shù)為—1。④由定義不難看出,k可以從兩個變量相對應(yīng)的任意一對對應(yīng)值的積來求得,只要k確定了,這個函數(shù)就確定了。教后反思:數(shù)學(xué)科第六單元教案課題:反比例函數(shù)的圖象與性質(zhì)(一)教學(xué)目標(三維)知識與技能1.進一步熟悉作函數(shù)圖象的主要步驟,會作反比例函數(shù)的圖象.2.體會函數(shù)的三種表示方法的互相轉(zhuǎn)換.對函數(shù)進行認識上的整合.3.逐步提高從函數(shù)圖象中獲取信息的能力,探索并掌握反比例函數(shù)的主要性質(zhì).過程與方法通過學(xué)生自己動手列表、描點、連線,提高學(xué)生的作圖能力;通過觀察圖象,概括反比例函數(shù)的有關(guān)性質(zhì),訓(xùn)練學(xué)生的概括、總結(jié)能力情感態(tài)度與價值觀讓學(xué)生積極參與到數(shù)學(xué)學(xué)習(xí)活動中,增強他們對數(shù)學(xué)學(xué)習(xí)的好奇心與求知欲.教學(xué)重點畫反比例函數(shù)的圖象;并從函數(shù)圖象中獲取信息,探索并研究反比例函數(shù)的主要性質(zhì).教學(xué)難點反比例函數(shù)的圖象特點及性質(zhì)的探究.考點分析課型:新授課課時:第1課時教學(xué)方法:教學(xué)過程個性化設(shè)計第一環(huán)節(jié):設(shè)疑激思復(fù)習(xí)引入教師幻燈片展示下列問題:1.當初我們從哪些方面研究了一次函數(shù)?2.畫一次函數(shù)圖象的步驟是什么?3.借助圖象我們研究了一次函數(shù)的哪些性質(zhì)?第二環(huán)節(jié):合作探究發(fā)現(xiàn)問題教師引導(dǎo)學(xué)生類比著畫一次函數(shù)圖象的過程來嘗試畫出反比例函數(shù)的圖象.全班交流:小組代表發(fā)言,談一下各小組內(nèi)在畫圖過程中存在哪些問題,教師組織、指導(dǎo)學(xué)生對各組情況和問題進行匯總。知識經(jīng)驗應(yīng)用:讓學(xué)生通過剛才兩個過程中積累的知識和經(jīng)驗,對小亮的作法進行點評。小明的做法:(1)列表:x-8-4-3-2-1-12348y=--1--2-4-88421(2)描點:(圖5-1)(3)連線:(圖5-2)學(xué)生回答:小明的畫法不正確,不是用光滑的曲線順次連接各點;圖象不是無限延伸的.教師再結(jié)合以上幾個環(huán)節(jié),進行總的總結(jié)和點評教師用幻燈片展示正確的反比例函數(shù)圖象(圖5-3):問題:1.反比例函數(shù)圖象是什么?2.畫反比例函數(shù)圖象應(yīng)該注意的問題是什么?總結(jié)歸納:(1)(2)用光滑的曲線連接各點(3)圖象是延伸的,不要畫成有明確端點。(4)曲線的發(fā)展趨勢是無限靠近坐標軸,但不和坐標軸相交第三環(huán)節(jié):鞏固新知夯實基礎(chǔ)活動一:小華畫的反比例函數(shù)的圖象如圖所示,你認為他畫的對嗎?活動二:畫反比例函數(shù)的圖象.第四環(huán)節(jié):觀察思考再探新知觀察和的圖象的形狀和位置,有什么相同點和不同點。(圖象見課件)1.自己觀察圖象找出相同點和不同點。2.小組展開討論反比例函數(shù)和的圖象在哪兩個象限,由什么確定。3.引導(dǎo)總結(jié)。結(jié)論:圖象分別都是由兩支曲線組成,因此稱反比例函數(shù)的圖象為雙曲線.反比例函數(shù)的圖象由k決定.當k>0時,兩支雙曲線分別位于一,三象限內(nèi);當k<0時,兩支雙曲線分別位于二,四象限內(nèi).第五環(huán)節(jié)活學(xué)活用鞏固提高1.已知y=(k≠0)的圖象的一部分如圖,則k__________02.反比例函數(shù)的圖象兩支分布在第二、四象限,則點(,)在()A第一象限B第二象限C第三象限D(zhuǎn)第四象限第六環(huán)節(jié)挑戰(zhàn)自我能力提升問題:1、反比例函數(shù)圖象是中心對稱圖形嗎?若是的話,請找出對稱中心.2、反比例函數(shù)圖象是軸對稱圖形嗎?若是的話,你能試著說明它的對稱軸是什么嗎?教師可以引導(dǎo)學(xué)生從兩支曲線上對稱的點出發(fā),來發(fā)現(xiàn)圖形的對稱關(guān)系。第七環(huán)節(jié):分層達標課后延伸A層1、(x>0)的圖象叫,圖象位于象限,2、寫出一個圖象分布在二、四象限內(nèi)的反比例函數(shù)解析式.B層1、已知函數(shù)是反比例函數(shù),且圖象經(jīng)過一、三象限,求m的值。2、與成反比,且當=6時,,這個函數(shù)關(guān)系式為第八環(huán)節(jié):歸納總結(jié)納入系統(tǒng)反比例函數(shù)的圖象由k決定。當k>0時,兩支雙曲線分別位于一,三象限內(nèi);當k<0時,兩支雙曲線分別位于二,四象限內(nèi);作業(yè)運用類比的思想,學(xué)生獨立畫反比例函數(shù)圖象,體現(xiàn)了結(jié)構(gòu)式教學(xué)的特點,讓學(xué)生自己發(fā)現(xiàn)問題,自己指出問題,自己解決問題。教師在此環(huán)節(jié)僅是作為引導(dǎo)者和組織者,充分發(fā)揮學(xué)生課堂學(xué)習(xí)的主動性.教后反思:數(shù)學(xué)科第六單元教案課題:反比例函數(shù)的圖象與性質(zhì)(二)教學(xué)目標(三維)知識與技能1.能畫出反比例函數(shù)的圖象,根據(jù)圖象和解析表達式探索并理解反比例函數(shù)的主要性質(zhì).2.提高學(xué)生觀察、分析能力和對圖象的感知水平,領(lǐng)會研究函數(shù)的一般要求.過程與方法1.讓學(xué)生經(jīng)歷知識的探究過程,通過全面的觀察和比較,積累數(shù)學(xué)方法和活動經(jīng)驗.2.逐步提高觀察和歸納分析能力,體驗數(shù)形結(jié)合和分類討論的數(shù)學(xué)思想.情感態(tài)度與價值觀經(jīng)歷小組合作與交流活動,在質(zhì)疑、追問、討論中達成共識,發(fā)展合作能力和語言表達能力.教學(xué)重點探索反比例函數(shù)的主要性質(zhì).教學(xué)難點理解反比例函數(shù)性質(zhì)的探索過程,從“數(shù)”和“形”兩方面綜合考慮問題.考點分析課型:新授課課時:第2課時教學(xué)方法:教學(xué)過程個性化設(shè)計第一環(huán)節(jié):要點回顧鋪平道路內(nèi)容:下列函數(shù)中,哪些是反比例函數(shù)?(1)(2)(3)(4)(5)2.你能想到的圖象嗎?它是什么形狀?有什么特點?呢?第二環(huán)節(jié):設(shè)問質(zhì)疑探究嘗試內(nèi)容1:試一試觀察反比例函數(shù),,的圖象,你能發(fā)現(xiàn)它們的共同特征嗎?(1)函數(shù)圖象分別位于哪幾個象限內(nèi)?(2)在每一個象限內(nèi),隨著x值的增大,y的值是怎樣變化的?能說明這是為什么嗎?(3)反比例函數(shù)的圖象可能與x軸相交嗎?可能與y軸相交嗎?為什么?內(nèi)容2:議一議考察當=-2,-4,-6時,反比例函數(shù)的圖象,它們有哪些共同特征?內(nèi)容3:說一說你能嘗試著說說反比例函數(shù)的圖象有哪些共同特征嗎?第三環(huán)節(jié):實際運用鞏固新知內(nèi)容:練一練1.下列函數(shù):①;②;③;④中(1)圖象位于二、四象限的有;(2)在每一象限內(nèi),隨的增大而增大的有;(3)在每一象限內(nèi),隨的增大而減小的有.2.若函數(shù)的圖象在其象限內(nèi),隨的增大而增大,則的取值范圍是.3.點,都在反比例函數(shù)的圖象上,若,則的大小關(guān)系是.變式:點,都在反比例函數(shù)的圖象上,若,則的大小關(guān)系是.第四環(huán)節(jié):激趣質(zhì)疑再探新知內(nèi)容1:想一想在一個反比例函數(shù)圖象任取兩點P、Q,過點P分別作x軸、y軸的平行線,與坐標軸圍成的矩形面積為;過點Q分別作x軸、y軸的平行線,與坐標軸圍成的矩形面積為,與有什么關(guān)系?為什么?(1)讓我們從具體的反比例函數(shù)開始考慮:此時,與有什么關(guān)系?為什么?(2)對于一般的反比例函數(shù)呢?內(nèi)容2:變一變在一個反比例函數(shù)圖象任取兩點P、Q,過點P作x軸的垂線,連接PO(O為原點),與坐標軸圍成的三角形面積為;過點Q作x軸的垂線,連接QO,與坐標軸圍成的三角形面積為,與有什么關(guān)系?為什么?第五環(huán)節(jié):活學(xué)活用鞏固提高1.如圖,是反比例函數(shù)的圖象在第一象限分支上的一個動點,隨著自變量的增大,矩形的面積()A.不變B.增大C.減小D.無法確定2.如圖,是反比例函數(shù)的圖象在第一象限分支上的一個動點,過點P作連接PO,則△PAO的面積為.3.已知點、點都在反比例函數(shù)的圖象上.過點P分別作兩坐標軸的垂線,垂線與兩坐標軸圍成的面積是;過點Q分別作兩坐標軸的垂線,垂線與兩坐標軸圍成的面積是.求的值.第六環(huán)節(jié):歸納總結(jié)納入系統(tǒng)內(nèi)容:本節(jié)課你學(xué)到了反比例函數(shù)的哪些新知識?你有哪些感悟和收獲?你還有想繼續(xù)探究的問題嗎?你對小組成員有什么評價和建議呢?第七環(huán)節(jié):分層達標課后延伸1.下列函數(shù)中,圖象位于第一、三象限的有;在圖象所在象限內(nèi),的值隨的增大而增大的有.(1);(2);(3);(4)2.已知點A(-1,)、B(-2,)在雙曲線上,則(填“>、<或=”).3.已知點,,,都在反比例函數(shù)的圖象上,比較、、與的大?。?.已知點,,都在反比例函數(shù)的圖象上,比較、、的大?。鳂I(yè):反比例函數(shù)的定義以及函數(shù)圖象的特點,是繼續(xù)進行本節(jié)內(nèi)容學(xué)習(xí)的重要知識儲備.本環(huán)節(jié)避免單純的復(fù)習(xí)定義以及對知識的簡單復(fù)述,力圖通過具體問題,讓學(xué)生在解決問題的過程中加深對知識本身的理解,培養(yǎng)學(xué)生的空間想象能力和對知識的實際運用能力.通過對時反比例函數(shù)圖像特征的探究,培養(yǎng)學(xué)生利用數(shù)形結(jié)合探究問題的意識,發(fā)展學(xué)生類比分析問題的能力,使學(xué)生在知識上更加完善,在能力上逐步提高.“試一試”、“議一議”已經(jīng)對反比例函數(shù)的圖象特征進行了細致的分析,內(nèi)容3主要是將知識進行了系統(tǒng)的歸納、概括,通過討論、交流,形成完整、規(guī)范的結(jié)論,培養(yǎng)了學(xué)生的語言表達能力和對知識的歸納、概括能力.教后反思:
反比例函數(shù)【復(fù)習(xí)目標:】1.掌握反比例函數(shù)的定義、圖象及性質(zhì).2.能解決一次函數(shù)與反比例函數(shù)綜合類問題.3.能運用反比例函數(shù)模型解決相關(guān)實際問題.二、主要知識點1.反比例函數(shù)的表達式是(k是數(shù)且k≠),自變量x的取值范圍是,其表達式還有兩種形式分別為和.2.反比例函數(shù)的圖象與性質(zhì)(填表)反比例函數(shù)y=EQ\F(k,x)(k是常數(shù)且k≠0)圖象(雙曲線)k>0k<0主要性質(zhì)位置兩個分支分別位于第象限內(nèi)兩個分支分別位于第象限內(nèi)增減性在每個象限內(nèi),y隨x的增大而在每個象限內(nèi),y隨x的增大而對稱性雙曲線是軸對稱圖形,直線____、_____為對稱軸的雙曲線是中心對稱圖形,對稱中心是3.反比例函數(shù)y=EQ\F(k,x)(k≠0)中系數(shù)k的幾何意義:(1)S矩形=________.(2)S三角形=________.三、例題與講解 1.下列函數(shù)表達式中,y不是x的反比例函數(shù)的是()A.y=EQ\F(3,x)B.y=EQ\F(x,3) C.y=EQ\F(1,2x) D.xy=EQ\F(1,2)2.若點EQA\b(\l(-1,y\S\DO(1))),B\b(\l(1,y\S\DO(2))),C\b(\l(3,y\S\DO(3)))在反比例函數(shù)y=EQ-\F(3,x)的圖象上,則EQy\S\DO(1),y\S\DO(2),y\S\DO(3)的大小關(guān)系是()A.EQy\S\DO(1)<y\S\DO(2)<y\S\DO(3) B.EQy\S\DO(2)<y\S\DO(3)<y\S\DO(1) C.EQy\S\DO(3)<y\S\DO(2)<y\S\DO(1) D.EQy\S\DO(2)<y\S\DO(1)<y\S\DO(3)3.反比例函數(shù)y=EQ\F(k-2,x)的圖象,當x>0時,y隨x的增大而減小,則k的取值范圍是()A.k<2 B.k≤2 C.k>2 D.k≥24.已知反比例函數(shù)y=EQ-\F(3,x),下列結(jié)論不正確的是()A.圖象必經(jīng)過點EQ(-1,3) B.若x>1,則-3<y<0C.圖象在第二、四象限內(nèi) D.y隨x的增大而增大5.己知反比例函數(shù)y=EQ\F(6,x),當1<x<3時,y的取值范圍是()A.0<y<1 B.1<y<2 C.y>6 D.2<y<66.如圖,直角坐標系中,反比例函數(shù)y=EQ\F(k,x)與一次函數(shù)y=kx-1(k為常數(shù),且k>0)的圖象可能是()A.B.C. D.7.如圖,直線x=2與反比例函數(shù)y=EQ\F(2,x),y=EQ-\F(1,x)的圖象分別交于A,B兩點,若點P是y軸上任意一點,則△PAB的面積是()A.EQ\F(1,2) B.1 C.EQ\F(3,2) D.28.如圖,△ABC的三個頂點分別為EQA(1,2),B(4,2),C(4,4).若反比例函數(shù)y=EQ\F(k,x)在第一象限內(nèi)的圖象與△ABC有交點,則k的取值范圍是()A.1≤k≤4 B.2≤k≤8 C.2≤k≤16 D.8≤k≤16【例2】已知A(-4,2)、B(n,-4)兩點是一次函數(shù)y=kx+b和反比例函數(shù)y=EQ\F(m,x)圖象的兩個交點.(1)求一次函數(shù)和反比例函數(shù)的解析式;(2)求△AOB的面積;(3)觀察圖象,直接寫出不等式kx+b-EQ\F(m,x)>0的解集.【例3:】學(xué)校對教室采用藥熏消毒法進行消毒,已知藥物燃燒時,室內(nèi)每立方米空氣中的含藥量y(mg)與時間x(min)成正比例.藥物燃燒后,y與x成反比例(如圖所示),現(xiàn)測得藥物8min燃畢,此時室內(nèi)空氣中每立方米的含藥量為6mg,請根據(jù)題中所提供的信息,解答下列問題:(1)藥物燃燒時,y關(guān)于x的函數(shù)關(guān)系式為:________,自變量x的取值范圍是:_______,藥物燃燒后y關(guān)于x的函數(shù)關(guān)系式為_______.(2)當空氣中每立方米的含藥量低于1.6mg時學(xué)生方可進教室,那么從消毒開始,至少需要經(jīng)過幾分鐘后,學(xué)生才能回到教室;(3)當空氣中每立方米的含藥量不低于3mg且持續(xù)時間不低于10min時,才有效殺滅空氣中的病菌,那么此次消毒是否有效?為什么?1.(17棗莊)如圖,O是坐標原點,菱形OABC的頂點A的坐標為(-3,4),頂點C在x軸的負半軸上,函數(shù)y=EQ\F(k,x)(x<0)的圖象經(jīng)過頂點B,則k的值為() A.-12 B.-27 C.-32 D.-362.(17威海)如圖正方形ABCD的邊長為5,點A的坐標為(-4,0)點B在y軸上,若反比例函數(shù)y=EQ\F(k,x)(k≠0)的圖像經(jīng)過點C,則該反比例函數(shù)的表達式為()A.y=EQ\F(3,x)B.y=EQ\F(4,x)C.y=EQ\F(5,x)D.y=EQ\F(6,x)3.(17自貢)一次函數(shù)y1=k1x+b和反比例函數(shù)y2=EQ\F(k2,x)(k1·k2≠0)的圖像如圖所示,若y1>y2,則x的取值范圍是()A.-2<x<0或x>1 B.-2<x<1 C.x<-2或x>1 D.x<-2或0<x<14.如圖,直線OA和直線OB與反比例函數(shù)y=EQ\F(k,x)(x>0)的圖象分別交于A,B兩點,過點A作x軸的平行線交直線OB于點C,若OB:BC=2:3,△AOC的面積為21,則k的值為()A.6 B.8 C.12 D.145.(17蘭州)如圖,反比例函數(shù)y=EQ\F(k,x)(x<0)與一次函數(shù)y=x+4的圖象交于A,B兩點的橫坐標分別為-3,-1,則關(guān)于x的不等式EQ\F(k,x)<x+4(x<0)的解集為()A.x<-3 B.-3<x<-1 C.-1<x<0 D.x<-3或-1<x<06.已知:如圖4,在平面直角坐標系xoy中,等邊△AOB的邊長為6,點C在邊OA上,點D在邊AB上,且OC=3BD.反比例函數(shù)y=EQ\F(k,x)(k≠0)的圖象恰好經(jīng)過點C和點D.則k的值為()A.B.C.D.7.(17盤錦)如圖,雙曲線y=-EQ\F(3,2x)(x<0)經(jīng)過OABC的對角線交點D,已知邊OC在軸上,且AC⊥OC于點C,則OABC的面積是()A.EQ\F(3,2) B.EQ\F(9,4)C.3D.68.反比例函數(shù)y=圖象上三個點的坐標為(x1,y1)、(x2,y2)、(x3,y3).若x1<x2<0<x3,則y1,y2,y3的大小關(guān)系是()A.y1<y2<y3 B.y2<y1<y3 C.y2<y3<y1 D.y1<y3<y29.直線y=-EQ\F(1,2)x+b與x軸交于點A,與雙曲線y=-EQ\F(4,x)(x<0)交于點B.若S△AOB=2,則b的值是()A.4 B.3 C.2 D.110.15.如圖,已知點P(6,3),過點P作PM⊥x軸于點M,PN⊥y軸于點N,反比例函數(shù)y=EQ\F(k,x)的圖象交PM于點A,交PN于點B.若四邊形OAPB的面積為12,則k=___________.12.設(shè)函數(shù)與的圖象的交點坐標為,則的值是.13.(17揚州)如圖,已知點A是反比例函數(shù)y=-EQ\F(2,x)的圖像上的一個動點,連接OA,若將線段OA繞點O順時針旋轉(zhuǎn)90°得到線段OB,則點B所在圖像的函數(shù)表達式為.14.(17煙臺)如圖,直線y=x+2與反比例函數(shù)y=EQ\F(k,x)的圖象在第一象限交于點P,若OP=,則k的值為.15.(17鄂州)如圖,AC⊥軸軸于點A,點B在軸的正半軸上,∠ABC=60°,AB=4,BC=,點D為AC與反比例函數(shù)y=EQ\F(k,x)的圖像的交點,若直線BD將△ABC的面積分成1∶2的兩部分,則的值為________.17.(17永州)如圖,已知反比例函數(shù)y=EQ\F(k,x)(k為常數(shù),k≠0)的圖象經(jīng)過點A,過A點作AB⊥x軸,垂足為B,若△AOB的面積為1,則k=________________.18.如圖,過y軸上任意一點P,作x軸的平行線,分別與反比例函數(shù)y=?EQ\F(3,x)和y=EQ\F(1,x)的圖象交于A點和B點,若點C為x軸上任意一點,連接AC、BC,則△ABC的面積為_________.20.(17畢節(jié))如圖,已知一次函數(shù)y=kx-3(k≠0)的圖象與軸,軸分別交于A,B兩點,與反比例函數(shù)y=EQ\F(12,x)(x>0)交于C點,且AB=AC,則的值為______.21.(17廣安)如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=eq\f(m,x)的圖象在第一象限交于點A(4,2),與y軸的負半軸交于點B,且OB=6. (1)求函數(shù)y=eq\f(m,x)和y=kx+b的解析式.(2)已知直線AB與x軸相交于點C.在第一象限內(nèi),求反比例函數(shù)y=eq\f(m,x)的圖象上一點P,使得S△POC=9. 22.如圖,一次函數(shù)y=ax+b的圖象與反比例函數(shù)y=EQ\F(k,x)的圖象交于C,D兩點,與x,y軸交于B,A兩點,且AO=2,OB=4,OE=2.(1)求一次函數(shù)的解析式和反比例函數(shù)的解析式;(2)求△OCD的面積;(3)根據(jù)圖象直接寫出一次函數(shù)的值大于反比例函數(shù)的值時,自變量x的取值范圍.23.如圖,已知反比例函數(shù)y=EQ\F(k1,x)(k1>0)與一次函數(shù)y=k2x+1(k2≠0)的圖象交于A,B兩點,AC⊥x軸于點C.若△OAC的面積為1,且AC=2OC.
(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)請直接寫出點B的坐標;
(3)當x為何值時,反比例函數(shù)的值大于一次函數(shù)的值?24.(17蘇州)如圖,在△ABC中,AC=BC,AB⊥x軸,垂足為A.反比例函數(shù)y=EQ\F(k,x)(x>0)的圖像經(jīng)過點C,交AB于點D.已知AB=4,BC=EQ\F(5,2).(1)若OA=4,求k的值;(2)連接OC,若BD=BC,求OC的長.25.(17聊城)如圖,分別位于反比例函數(shù)y=EQ\F(1,x),y=EQ\F(k,x)在第一象限圖象上的兩點A、B,與原點O在同一直線上,且EQ\F(OA,OB)=EQ\F(1,3).(1)求反比例函數(shù)y=EQ\F(k,x)的表達式;(2)過點作軸的平行線交y=EQ\F(k,x)的圖象于點,連接,求的面積.26.如圖,一次函數(shù)y=-EQ\F(EQ\R(,3),3)x+1的圖象與x軸、y軸分別交于點A、B,以線段AB為邊在第一象限作等邊△ABC.(1)若點C在反比例函數(shù)y=EQ\F(k,x)的圖象上,求該反比例函數(shù)的解析式;(2)點P(2EQ\R(,3),m)在第一象限,過點P作x軸的垂線,垂足為D,當△PAD與△OAB相似時,P點是否在(1)中反比例函數(shù)圖象上,如果在,求出P點坐標;如果不在,請加以說明.27.如圖,在平面直角坐標系中,直線AB與函數(shù)y=EQ\F(k,x)(x>0)的圖象交于點A(m,2),B(2,n).過點A作AC平行于x軸交y軸于點C,在y軸負半軸上取一點D,使OD=EQ\F(1,2)OC,且△ACD的面積是6,連接BC.(1)求m,k,n的值;(2)求△ABC的面積.21.如圖,在平面直角坐標系xOy中,直線y=-x+3交y軸于點A,交反比例函數(shù)y=EQ\F(k,x)(k<0)的圖象于點D,y=EQ\F(k,x)(k<0)的圖象過矩形OABC的頂點B,矩形OABC的面積為4,連接OD.(1)求反比例函數(shù)y=EQ\F(k,x)的表達式;(2)求△AOD的面積.28.如圖,直線y=2x+6與反比例函數(shù)y=EQ\F(k,x)(k>0)的圖象交于點A(1,m),與x軸交于點B,平行于x軸的直線y=n(0<n<6)交反比例函數(shù)的圖象于點M,交AB于點N,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024物流倉儲合同
- 2024年跨國商品銷售合同及其附件
- 二零二五版酒店式公寓租賃合同(含家政服務(wù))下載3篇
- 第三人民醫(yī)院肉類配送服務(wù)合同(含冷鏈運輸及質(zhì)量控制)二零二五年度3篇
- 2025年度智慧城市建設(shè)承包協(xié)議模板3篇
- 2025版五星酒店廚師長職位競聘與聘用合同3篇
- 2025年度旅游景區(qū)場地承包使用權(quán)合同3篇
- 2025年度林業(yè)土地經(jīng)營權(quán)入股合同范本4篇
- 高校二零二五年度科研項目管理聘用合同3篇
- 2024年:知識產(chǎn)權(quán)保護合同2篇
- 第22單元(二次函數(shù))-單元測試卷(2)-2024-2025學(xué)年數(shù)學(xué)人教版九年級上冊(含答案解析)
- 安全常識課件
- 河北省石家莊市2023-2024學(xué)年高一上學(xué)期期末聯(lián)考化學(xué)試題(含答案)
- 小王子-英文原版
- 新版中國食物成分表
- 2024年山東省青島市中考生物試題(含答案)
- 河道綜合治理工程技術(shù)投標文件
- 專題24 短文填空 選詞填空 2024年中考英語真題分類匯編
- 再生障礙性貧血課件
- 產(chǎn)后抑郁癥的護理查房
- 2024年江蘇護理職業(yè)學(xué)院高職單招(英語/數(shù)學(xué)/語文)筆試歷年參考題庫含答案解析
評論
0/150
提交評論