遼寧省丹東市第五中學2023-2024學年中考三模數學試題含解析_第1頁
遼寧省丹東市第五中學2023-2024學年中考三模數學試題含解析_第2頁
遼寧省丹東市第五中學2023-2024學年中考三模數學試題含解析_第3頁
遼寧省丹東市第五中學2023-2024學年中考三模數學試題含解析_第4頁
遼寧省丹東市第五中學2023-2024學年中考三模數學試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

遼寧省丹東市第五中學2023-2024學年中考三模數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.4的平方根是()A.4 B.±4 C.±2 D.22.下列美麗的圖案中,不是軸對稱圖形的是()A. B. C. D.3.數軸上有A,B,C,D四個點,其中絕對值大于2的點是()A.點A B.點B C.點C D.點D4.如圖,AD為△ABC的中線,點E為AC邊的中點,連接DE,則下列結論中不一定成立的是()A.DC=DE B.AB=2DE C.S△CDE=S△ABC D.DE∥AB5.等腰三角形的兩邊長分別為5和11,則它的周長為()A.21 B.21或27 C.27 D.256.“嫦娥一號”衛(wèi)星順利進入繞月工作軌道,行程約有1800000千米,1800000這個數用科學記數法可以表示為A. B. C. D.7.如圖,四邊形ABCD中,AC垂直平分BD,垂足為E,下列結論不一定成立的是()A.AB=AD B.AC平分∠BCDC.AB=BD D.△BEC≌△DEC8.有若干個完全相同的小正方體堆成一個如圖所示幾何體,若現在你手頭還有一些相同的小正方體,如果保持俯視圖和左視圖不變,最多可以再添加小正方體的個數為()A.2 B.3 C.4 D.59.如圖圖形中,可以看作中心對稱圖形的是()A. B. C. D.10.下列因式分解正確的是A. B.C. D.11.不解方程,判別方程2x2﹣3x=3的根的情況()A.有兩個相等的實數根 B.有兩個不相等的實數根C.有一個實數根 D.無實數根12.已知函數的圖象與x軸有交點.則的取值范圍是()A.k<4 B.k≤4 C.k<4且k≠3 D.k≤4且k≠3二、填空題:(本大題共6個小題,每小題4分,共24分.)13.今年,某縣境內跨湖高速進入施工高峰期,交警隊為提醒出行車輛,在一些主要路口設立了交通路況警示牌(如圖).已知立桿AD高度是4m,從側面C點測得警示牌頂端點A和底端B點的仰角(∠ACD和∠BCD)分別是60°,45°.那么路況警示牌AB的高度為_____.14.分解因式:x2y﹣xy2=_____.15.計算(+)(-)的結果等于________.16.已知,且,則的值為__________.17.不等式組有2個整數解,則m的取值范圍是_____.18.=__________三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,是一座古拱橋的截面圖,拱橋橋洞的上沿是拋物線形狀,當水面的寬度為10m時,橋洞與水面的最大距離是5m.經過討論,同學們得出三種建立平面直角坐標系的方案(如圖),你選擇的方案是(填方案一,方案二,或方案三),則B點坐標是,求出你所選方案中的拋物線的表達式;因為上游水庫泄洪,水面寬度變?yōu)?m,求水面上漲的高度.20.(6分)在眉山市櫻花節(jié)期間,岷江二橋一端的空地上有一塊矩形的標語牌ABCD(如圖).已知標語牌的高AB=5m,在地面的點E處,測得標語牌點A的仰角為30°,在地面的點F處,測得標語牌點A的仰角為75°,且點E,F,B,C在同一直線上,求點E與點F之間的距離.(計算結果精確到0.1m,參考數據:≈1.41,≈1.73)21.(6分)雅安地震,某地駐軍對道路進行清理.該地駐軍在清理道路的工程中出色完成了任務.這是記者與駐軍工程指揮部的一段對話:記者:你們是用9天完成4800米長的道路清理任務的?指揮部:我們清理600米后,采用新的清理方式,這樣每天清理長度是原來的2倍.通過這段對話,請你求出該地駐軍原來每天清理道路的米數.22.(8分)一次函數y=34x的圖象如圖所示,它與二次函數y=ax2(1)求點C的坐標;(2)設二次函數圖象的頂點為D.①若點D與點C關于x軸對稱,且△ACD的面積等于3,求此二次函數的關系式;②若CD=AC,且△ACD的面積等于10,求此二次函數的關系式.23.(8分)小華想復習分式方程,由于印刷問題,有一個數“?”看不清楚:.她把這個數“?”猜成5,請你幫小華解這個分式方程;小華的媽媽說:“我看到標準答案是:方程的增根是,原分式方程無解”,請你求出原分式方程中“?”代表的數是多少?24.(10分)投資1萬元圍一個矩形菜園(如圖),其中一邊靠墻,另外三邊選用不同材料建造.墻長24m,平行于墻的邊的費用為200元/m,垂直于墻的邊的費用為150元/m,設平行于墻的邊長為xm設垂直于墻的一邊長為ym,直接寫出y與x之間的函數關系式;若菜園面積為384m2,求x的值;求菜園的最大面積.25.(10分)如圖,一位測量人員,要測量池塘的寬度的長,他過兩點畫兩條相交于點的射線,在射線上取兩點,使,若測得米,他能求出之間的距離嗎?若能,請你幫他算出來;若不能,請你幫他設計一個可行方案.26.(12分)解不等式組:并把解集在數軸上表示出來.27.(12分)已知:如圖,點E是正方形ABCD的邊CD上一點,點F是CB的延長線上一點,且DE=BF.求證:EA⊥AF.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】

根據平方根的定義,求數a的平方根,也就是求一個數x,使得x1=a,則x就是a的平方根,由此即可解決問題.【詳解】∵(±1)1=4,∴4的平方根是±1.故選D.【點睛】本題考查了平方根的定義.注意一個正數有兩個平方根,它們互為相反數;0的平方根是0;負數沒有平方根.2、A【解析】

根據軸對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、不是軸對稱圖形,故本選項正確;B、是軸對稱圖形,故本選項錯誤;C、是軸對稱圖形,故本選項錯誤;D、是軸對稱圖形,故本選項錯誤.故選A.【點睛】本題考查了軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.3、A【解析】

根據絕對值的含義和求法,判斷出絕對值等于2的數是﹣2和2,據此判斷出絕對值等于2的點是哪個點即可.【詳解】解:∵絕對值等于2的數是﹣2和2,∴絕對值等于2的點是點A.故選A.【點睛】此題主要考查了絕對值的含義和求法,要熟練掌握,解答此題的關鍵要明確:①互為相反數的兩個數絕對值相等;②絕對值等于一個正數的數有兩個,絕對值等于0的數有一個,沒有絕對值等于負數的數.③有理數的絕對值都是非負數.4、A【解析】

根據三角形中位線定理判斷即可.【詳解】∵AD為△ABC的中線,點E為AC邊的中點,

∴DC=BC,DE=AB,∵BC不一定等于AB,∴DC不一定等于DE,A不一定成立;∴AB=2DE,B一定成立;S△CDE=S△ABC,C一定成立;DE∥AB,D一定成立;故選A.【點睛】本題考查的是三角形中位線定理,掌握三角形的中位線平行于第三邊,并且等于第三邊的一半是解題的關鍵.5、C【解析】試題分析:分類討論:當腰取5,則底邊為11,但5+5<11,不符合三角形三邊的關系;當腰取11,則底邊為5,根據等腰三角形的性質得到另外一邊為11,然后計算周長.解:當腰取5,則底邊為11,但5+5<11,不符合三角形三邊的關系,所以這種情況不存在;當腰取11,則底邊為5,則三角形的周長=11+11+5=1.故選C.考點:等腰三角形的性質;三角形三邊關系.6、C【解析】分析:一個絕對值大于10的數可以表示為的形式,其中為整數.確定的值時,整數位數減去1即可.當原數絕對值>1時,是正數;當原數的絕對值<1時,是負數.詳解:1800000這個數用科學記數法可以表示為故選C.點睛:考查科學記數法,掌握絕對值大于1的數的表示方法是解題的關鍵.7、C【解析】

解:∵AC垂直平分BD,∴AB=AD,BC=CD,∴AC平分∠BCD,平分∠BCD,BE=DE.∴∠BCE=∠DCE.在Rt△BCE和Rt△DCE中,∵BE=DE,BC=DC,∴Rt△BCE≌Rt△DCE(HL).∴選項ABD都一定成立.故選C.8、C【解析】若要保持俯視圖和左視圖不變,可以往第2排右側正方體上添加1個,往第3排中間正方體上添加2個、右側兩個正方體上再添加1個,即一共添加4個小正方體,故選C.9、D【解析】

根據把一個圖形繞某一點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形,這個點叫做對稱中心進行分析即可.【詳解】解:A、不是中心對稱圖形,故此選項不合題意;B、不是中心對稱圖形,故此選項不合題意;C、不是中心對稱圖形,故此選項不合題意;D、是中心對稱圖形,故此選項符合題意;故選D.【點睛】此題主要考查了中心對稱圖形,關鍵掌握中心對稱圖形定義.10、D【解析】

直接利用提取公因式法以及公式法分解因式,進而判斷即可.【詳解】解:A、,無法直接分解因式,故此選項錯誤;B、,無法直接分解因式,故此選項錯誤;C、,無法直接分解因式,故此選項錯誤;D、,正確.故選:D.【點睛】此題主要考查了提取公因式法以及公式法分解因式,正確應用公式是解題關鍵.11、B【解析】一元二次方程的根的情況與根的判別式有關,,方程有兩個不相等的實數根,故選B12、B【解析】試題分析:若此函數與x軸有交點,則,Δ≥0,即4-4(k-3)≥0,解得:k≤4,當k=3時,此函數為一次函數,題目要求仍然成立,故本題選B.考點:函數圖像與x軸交點的特點.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、m【解析】

由特殊角的正切值即可得出線段CD的長度,在Rt△BDC中,由∠BCD=45°,得出CD=BD,求出BD長度,再利用線段間的關系即可得出結論.【詳解】在Rt△ADC中,∠ACD=60°,AD=4∴tan60°==∴CD=∵在Rt△BCD中,∠BAD=45°,CD=∴BD=CD=.∴AB=AD-BD=4-=路況警示牌AB的高度為m.故答案為:m.【點睛】解直角三角形的應用-仰角俯角問題.14、xy(x﹣y)【解析】原式=xy(x﹣y).故答案為xy(x﹣y).15、2【解析】

利用平方差公式進行計算即可得.【詳解】原式==5-3=2,故答案為:2.【點睛】本題考查了二次根式的混合運算,掌握平方差公式結構特征是解本題的關鍵.16、1【解析】分析:直接利用已知比例式假設出a,b,c的值,進而利用a+b-2c=6,得出答案.詳解:∵,∴設a=6x,b=5x,c=4x,∵a+b-2c=6,∴6x+5x-8x=6,解得:x=2,故a=1.故答案為1.點睛:此題主要考查了比例的性質,正確表示出各數是解題關鍵.17、1<m≤2【解析】

首先根據不等式恰好有個整數解求出不等式組的解集為,再確定.【詳解】不等式組有個整數解,其整數解有、這個,.故答案為:.【點睛】此題主要考查了解不等式組,關鍵是正確理解解集的規(guī)律:同大取大,同小取小,大小小大中間找,大大小小找不到.18、2;【解析】試題解析:先求-2的平方4,再求它的算術平方根,即:.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)方案1;B(5,0);;(2)3.2m.【解析】試題分析:(1)根據拋物線在坐標系的位置,可用待定系數法求拋物線的解析式.(2)把x=3代入拋物線的解析式,即可得到結論.試題解析:解:方案1:(1)點B的坐標為(5,0),設拋物線的解析式為:.由題意可以得到拋物線的頂點為(0,5),代入解析式可得:,∴拋物線的解析式為:;(2)由題意:把代入,解得:=3.2,∴水面上漲的高度為3.2m.方案2:(1)點B的坐標為(10,0).設拋物線的解析式為:.由題意可以得到拋物線的頂點為(5,5),代入解析式可得:,∴拋物線的解析式為:;(2)由題意:把代入解得:=3.2,∴水面上漲的高度為3.2m.方案3:(1)點B的坐標為(5,),由題意可以得到拋物線的頂點為(0,0).設拋物線的解析式為:,把點B的坐標(5,),代入解析式可得:,∴拋物線的解析式為:;(2)由題意:把代入解得:=,∴水面上漲的高度為3.2m.20、7.3米【解析】

:如圖作FH⊥AE于H.由題意可知∠HAF=∠HFA=45°,推出AH=HF,設AH=HF=x,則EF=2x,EH=x,在Rt△AEB中,由∠E=30°,AB=5米,推出AE=2AB=10米,可得x+x=10,解方程即可.【詳解】解:如圖作FH⊥AE于H.由題意可知∠HAF=∠HFA=45°,∴AH=HF,設AH=HF=x,則EF=2x,EH=x,在Rt△AEB中,∵∠E=30°,AB=5米,∴AE=2AB=10米,∴x+x=10,∴x=5﹣5,∴EF=2x=10﹣10≈7.3米,答:E與點F之間的距離為7.3米【點睛】本題考查的知識點是解直角三角形的應用-仰角俯角問題,解題的關鍵是熟練的掌握解直角三角形的應用-仰角俯角問題.21、1米.【解析】試題分析:根據題意可以列出相應的分式方程,然后解分式方程,即可得到結論.試題解析:解:設原來每天清理道路x米,根據題意得:解得,x=1.檢驗:當x=1時,2x≠0,∴x=1是原方程的解.答:該地駐軍原來每天清理道路1米.點睛:本題考查分式方程的應用,解題的關鍵是明確分式方程的解答方法,注意分式方程要驗根.22、(1)點C(1,32);(1)①y=38x1-32x;②y=-12x【解析】試題分析:(1)求得二次函數y=ax1-4ax+c對稱軸為直線x=1,把x=1代入y=34x求得y=32,即可得點C的坐標;(1)①根據點D與點C關于x軸對稱即可得點D的坐標,并且求得CD的長,設A(m,34m),根據S△ACD=3即可求得m的值,即求得點A的坐標,把A.D的坐標代入y=ax1-4ax+c得方程組,解得a、c的值即可得二次函數的表達式.②設A(m,34m)(m<1),過點A作AE⊥CD于E,則AE=1-m,CE=根據勾股定理用m表示出AC的長,根據△ACD的面積等于10可求得m的值,即可得A點的坐標,分兩種情況:第一種情況,若a>0,則點D在點C下方,求點D的坐標;第二種情況,若a<0,則點D在點C上方,求點D的坐標,分別把A、D的坐標代入y=ax1-4ax+c即可求得函數表達式.試題解析:(1)y=ax1-4ax+c=a(x-1)1-4a+c.∴二次函數圖像的對稱軸為直線x=1.當x=1時,y=34x=32,∴C(1,(1)①∵點D與點C關于x軸對稱,∴D(1,-32設A(m,34m)(m<1),由S△ACD=3,得1由A(0,0)、D(1,-32)得解得a=38∴y=38x1-3②設A(m,34m)(m<1),過點A作AE⊥CD于E,則AE=1-m,CE=32-AC==54(1-m),∵CD=AC,∴CD=54由S△ACD=10得12×54(1-m)∴A(-1,-32若a>0,則點D在點C下方,∴D(1,-72由A(-1,-32)、D(1,-72)得解得∴y=18x1-1若a<0,則點D在點C上方,∴D(1,132由A(-1,-32)、D(1,132)得解得∴y=-12x1+1x+9考點:二次函數與一次函數的綜合題.23、(1);(2)原分式方程中“?”代表的數是-1.【解析】

(1)“?”當成5,解分式方程即可,(2)方程有增根是去分母時產生的,故先去分母,再將x=2代入即可解答.【詳解】(1)方程兩邊同時乘以得解得經檢驗,是原分式方程的解.(2)設?為,方程兩邊同時乘以得由于是原分式方程的增根,所以把代入上面的等式得所以,原分式方程中“?”代表的數是-1.【點睛】本題考查了分式方程解法和增根的定義及應用.增根是分式方程化為整式方程后產生的使分式方程的分母為0的根.增根確定后可按如下步驟進行:

①化分式方程為整式方程;

②把增根代入整式方程即可求得相關字母的值.24、(1)見詳解;(2)x=18;(3)416m2.【解析】

(1)根據“垂直于墻的長度=可得函數解析式;(2)根據矩形的面積公式列方程求解可得;(3)根據矩形的面積公式列出總面積關于x的函數解析式,配方成頂點式后利用二次函數的性質求解可得.【詳解】(1)根據題意知,y==-x+;(2)根據題意,得(-x+)x=384,解得x=18或x=32.∵墻的長度為24m,∴x=18.(3)設菜園的面積是S,則S=(-x+)x=-x2+x=-(x-25)2+.∵-<0,∴當x<25時,S隨x的增大而增大.∵x≤24,∴當x=24時,S取得最大值,最大值為416.答:菜園的最大面積為416

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論