版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.已知關于x的方程(m+4)x2+2x﹣3m=0是一元二次方程,則m的取值范圍是()A.m<﹣4 B.m≠0 C.m≠﹣4 D.m>﹣42.關于的一元二次方程根的情況是()A.有兩個不相等的實數根 B.有兩個相等的實數根C.有一個實數根 D.沒有實數根3.如圖,?ABCD的對角線AC,BD交于點O,已知,,,則的周長為A.13 B.17 C.20 D.264.已知△ABC∽△A1B1C1,若△ABC與△A1B1C1的相似比為3:2,則△ABC與△A1B1C1的周長之比是()A.2:3 B.9:4 C.3:2 D.4:95.如圖,AB為⊙O的直徑,CD為⊙O上的兩個點(CD兩點分別在直徑AB的兩側),連接BD,AD,AC,CD,若∠BAD=56°,則∠C的度數為()A.56° B.55°C.35° D.34°6.如圖,在直角坐標系中,矩形OABC的頂點O在坐標原點,邊OA在x軸上,OC在y軸上,且點B的坐標為(6,4),如果矩形OA′B′C′與矩形OABC關于點O位似,且矩形OA′B′C′的面積等于矩形OABC面積的,那么點B′的坐標是()A.(3,2) B.(-2,-3)C.(2,3)或(-2,-3) D.(3,2)或(-3,-2)7.如圖,在平面直角坐標系中,半徑為2的圓P的圓心P的坐標為(﹣3,0),將圓P沿x軸的正方向平移,使得圓P與y軸相切,則平移的距離為()A.1 B.3 C.5 D.1或58.已知二次函數y=x2﹣6x+m(m是實數),當自變量任取x1,x2時,分別與之對應的函數值y1,y2滿足y1>y2,則x1,x2應滿足的關系式是()A.x1﹣3<x2﹣3 B.x1﹣3>x2﹣3 C.|x1﹣3|<|x2﹣3| D.|x1﹣3|>|x2﹣3|9.在△ABC中,若|sinA﹣|+(﹣cosB)2=0,則∠C的度數是()A.45° B.75° C.105° D.120°10.拋物線y=ax2+bx+c與直線y=ax+c(a≠0)在同一直角坐標系中的圖象可能是()A. B.C. D.11.如圖,在大小為的正方形網格中,是相似三角形的是()A.甲和乙 B.乙和丙 C.甲和丙 D.乙和丁12.直線與拋物線只有一個交點,則的值為()A. B. C. D.二、填空題(每題4分,共24分)13.如圖,點A、B分別在反比例函數y=(k1>0)和y=(k2<0)的圖象上,連接AB交y軸于點P,且點A與點B關于P成中心對稱.若△AOB的面積為4,則k1-k2=______.14.二次函數的頂點坐標___________.15.如圖,圓錐的底面半徑r為4,沿著一條母線l剪開后所得扇形的圓心角?=90°,則該圓錐的母線長是_________________.16.將一元二次方程變形為的形式為__________.17.如圖所示是某種貨號的直三棱柱(底面是等腰直角三角形)零件的三視圖,則它的表面積為__________18.婷婷和她媽媽玩猜拳游戲.規(guī)定每人每次至少要出一個手指,兩人出拳的手指數之和為偶數時婷婷獲勝.那么,婷婷獲勝的概率為______.三、解答題(共78分)19.(8分)解方程:x2+x﹣3=1.20.(8分)某小型工廠9月份生產的、兩種產品數量分別為200件和100件,、兩種產品出廠單價之比為2:1,由于訂單的增加,工廠提高了、兩種產品的生產數量和出廠單價,10月份產品生產數量的增長率和產品出廠單價的增長率相等,產品生產數量的增長率是產品生產數量的增長率的一半,產品出廠單價的增長率是產品出廠單價的增長率的2倍,設產品生產數量的增長率為(),若10月份該工廠的總收入增加了,求的值.21.(8分)我們把端點都在格點上的線段叫做格點線段.如圖,在7×7的方格紙中,有一格點線段AB,按要求畫圖.(1)在圖1中畫一條格點線段CD將AB平分.(2)在圖2中畫一條格點線段EF.將AB分為1:1.22.(10分)如圖,⊙O的直徑AB為10cm,弦BC=8cm,∠ACB的平分線交⊙O于點D.連接AD,BD.求四邊形ABCD的面積.23.(10分)已知x2+xy+y=12,y2+xy+x=18,求代數式3x2+3y2﹣2xy+x+y的值.24.(10分)如圖,AB是⊙O的直徑,點C在圓O上,BE⊥CD垂足為E,CB平分∠ABE,連接BC(1)求證:CD為⊙O的切線;(2)若cos∠CAB=,CE=,求AD的長.25.(12分)一次函數與反比例函數的圖象相交于A(﹣1,4),B(2,n)兩點,直線AB交x軸于點D.(1)求一次函數與反比例函數的表達式;(2)過點B作BC⊥y軸,垂足為C,連接AC交x軸于點E,求△AED的面積S.26.已知正比例函數y=k1x(k1≠0)與反比例函數的圖象交于A、B兩點,點A的坐標為(2,1).(1)求正比例函數、反比例函數的表達式;(2)求點B的坐標.
參考答案一、選擇題(每題4分,共48分)1、C【分析】根據一元二次方程的定義即可求出答案.【詳解】由題意可知:m+4≠0,∴m≠﹣4,故選:C.【點睛】本題考查一元二次方程,解題的關鍵是正確理解一元二次方程的定義,本題屬于基礎題型.2、A【分析】先寫出的值,計算的值進行判斷.【詳解】
方程有兩個不相等的實數根故選A【點睛】本題考查一元二次方程根的判別式,是常見考點,當時,方程有兩個不相等的實數根;當時,方程有兩個相等的實數根;當時,方程沒有實數根,熟記公式并靈活應用公式是解題關鍵.3、B【分析】由平行四邊形的性質得出,,,即可求出的周長.【詳解】四邊形ABCD是平行四邊形,,,,的周長.故選B.【點睛】本題主要考查了平行四邊形的性質,并利用性質解題平行四邊形基本性質:平行四邊形兩組對邊分別平行;平行四邊形的兩組對邊分別相等;平行四邊形的兩組對角分別相等;平行四邊形的對角線互相平分.4、C【分析】直接利用相似三角形的性質求解.【詳解】解:∵△ABC與△A1B1C1的相似比為3:1,∴△ABC與△A1B1C1的周長之比3:1.故選:C.【點睛】本題考查了相似三角形的性質:相似三角形的對應角相等,對應邊的比相等;相似三角形的對應線段(對應中線、對應角平分線、對應邊上的高)的比也等于相似比;相似三角形的面積的比等于相似比的平方.5、D【分析】利用直徑所對的圓周角是可求得的度數,根據同弧所對的的圓周角相等可得∠C的度數.【詳解】解:AB為⊙O的直徑,點D為⊙O上的一個點故選:D【點睛】本題考查了圓周角的性質,熟練掌握圓周角的相關性質是解題的關鍵.6、D【分析】利用位似圖形的性質得出位似比,進而得出對應點的坐標.【詳解】解:∵矩形OA′B′C′的面積等于矩形OABC面積的,
∴兩矩形面積的相似比為:1:2,
∵B的坐標是(6,4),∴點B′的坐標是:(3,2)或(-3,-2).
故選:D.【點睛】此題主要考查了位似變換的性質,得出位似圖形對應點坐標性質是解題關鍵.7、D【分析】分圓P在y軸的左側與y軸相切、圓P在y軸的右側與y軸相切兩種情況,根據切線的判定定理解答.【詳解】當圓P在y軸的左側與y軸相切時,平移的距離為3-2=1,當圓P在y軸的右側與y軸相切時,平移的距離為3+2=5,故選D.【點睛】本題考查的是切線的判定、坐標與圖形的變化-平移問題,掌握切線的判定定理是解題的關鍵,解答時,注意分情況討論思想的應用.8、D【分析】先利用二次函數的性質確定拋物線的對稱軸為直線x=3,然后根據離對稱軸越遠的點對應的函數值越大可得到|x1-3|>|x2-3|.【詳解】解:拋物線的對稱軸為直線x=-=3,∵y1>y2,
∴點(x1,y1)比點(x2,y2)到直線x=3的距離要大,
∴|x1-3|>|x2-3|.
故選D.【點睛】本題考查二次函數圖象上點的坐標特征:二次函數圖象上點的坐標滿足其解析式.也考查了二次函數的性質.9、C【解析】根據非負數的性質列出關系式,根據特殊角的三角函數值求出∠A、∠B的度數,根據三角形內角和定理計算即可.【詳解】由題意得,sinA-=0,-cosB=0,即sinA=,=cosB,解得,∠A=30°,∠B=45°,∴∠C=180°-∠A-∠B=105°,故選C.【點睛】本題考查的是非負數的性質的應用、特殊角的三角函數值的計算和三角形內角和定理的應用,熟記特殊角的三角函數值是解題的關鍵.10、D【分析】可先由一次函數y=ax+c圖象得到字母系數的正負,再與二次函數y=ax2+bx+c的圖象相比較看是否一致.【詳解】A.一次函數y=ax+c與y軸交點應為(0,c),二次函數y=ax2+bx+c與y軸交點也應為(0,c),圖象不符合,故本選項錯誤;B.由拋物線可知,a>0,由直線可知,a<0,a的取值矛盾,故本選項錯誤;C.由拋物線可知,a<0,由直線可知,a>0,a的取值矛盾,故本選項錯誤;D.由拋物線可知,a<0,由直線可知,a<0,且拋物線與直線與y軸的交點相同,故本選項正確.故選:D.【點睛】本題考查了拋物線和直線的性質,用假設法來解答這種數形結合題是一種很好的方法.11、C【分析】分別求得四個三角形三邊的長,再根據三角形三邊分別成比例的兩三角形相似來判定.【詳解】∵甲中的三角形的三邊分別是:,2,;乙中的三角形的三邊分別是:,,;丙中的三角形的三邊分別是:,,;丁中的三角形的三邊分別是:,,;只有甲與丙中的三角形的三邊成比例:,
∴甲與丙相似.
故選:C.【點睛】本題主要考查了相似三角形的判定方法、勾股定理等,熟記定理的內容是解題的關鍵.12、D【分析】直線y=-4x+1與拋物線y=x2+2x+k只有一個交點,則把y=-4x+1代入二次函數的解析式,得到的關于x的方程中,判別式△=0,據此即可求解.【詳解】根據題意得:x2+2x+k=-4x+1,
即x2+6x+(k-1)=0,
則△=36-4(k-1)=0,
解得:k=1.
故選:D.【點睛】本題考查了二次函數與一次函數的交點個數的判斷,把一次函數代入二次函數的解析式,得到的關于x的方程中,判別式△>0,則兩個函數有兩個交點,若△=0,則只有一個交點,若△<0,則沒有交點.二、填空題(每題4分,共24分)13、1【分析】作AC⊥y軸于C,BD⊥y軸于D,如圖,先證明△ACP≌△BDP得到S△ACP=S△BDP,利用等量代換和k的幾何意義得到=S△AOC+S△BOD=×|k1|+|k2|=4,然后利用k1<0,k2>0可得到k2-k1的值.【詳解】解:作AC⊥y軸于C,BD⊥y軸于D,如圖,∵點A與點B關于P成中心對稱.
∴P點為AB的中點,
∴AP=BP,
在△ACP和△BDP中,
∴△ACP≌△BDP(AAS),
∴S△ACP=S△BDP,
∴S△AOB=S△APO+S△BPO=S△AOC+S△BOD=×|k1|+|k2|=4,∴|k1|+|k2|=1
∵k1>0,k2<0,
∴k1-k2=1.
故答案為1.【點睛】本題考查了比例系數k的幾何意義:在反比例函數y=圖象中任取一點,過這一個點向x軸和y軸分別作垂線,與坐標軸圍成的矩形的面積是定值|k|.在反比例函數的圖象上任意一點向坐標軸作垂線,這一點和垂足以及坐標原點所構成的三角形的面積是|k|,且保持不變.也考查了反比例函數的性質.14、(6,3)【分析】利用配方法將二次函數的解析式化成頂點式即可得出答案.【詳解】由此可得,二次函數的頂點式為則頂點坐標為故答案為:.【點睛】本題考查了頂點式二次函數的性質,掌握二次函數頂點式的性質是解題關鍵.15、1【分析】由題意首先求得展開之后扇形的弧長也就是圓錐的底面周長,進一步利用弧長計算公式求得扇形的半徑,即圓錐的母線l.【詳解】解:扇形的弧長=4×2π=8π,可得=8π解得:l=1.故答案為:1.【點睛】本題考查圓錐的計算及其應用問題;解題的關鍵是靈活運用有關定理來分析、判斷、推理或解答.16、【分析】根據完全平方公式配方即可.【詳解】解:故答案為:.【點睛】此題考查的是配方法,掌握完全平方公式是解決此題的關鍵.17、(28+20)【分析】根據三視圖可知,直三棱柱的底面是斜邊為4厘米、斜邊上的高為2厘米的等腰直角三角形,直三棱柱的高是5厘米的立體圖形,根據表面積計算公式即可求解.【詳解】直三棱柱的底面如下圖,根據三視圖可知,為等腰直角三角形,斜邊上的高為2厘米,根據等腰三角形三線合一的性質得:,∴,它的表面積為:(平方厘米)故答案為:.【點睛】考查了由三視圖判斷幾何體,幾何體的表面積,關鍵是得到直三棱柱的底面三角形各邊的長.18、【分析】根據題意,可用列舉法、列表法或樹狀統(tǒng)計圖來計算出總次數和婷婷獲勝的次數,從而求出婷婷獲勝的概率【詳解】解:根據題意,一共有25個等可能的結果,即(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5);兩人出拳的手指數之和為偶數的結果有13個,所以婷婷獲勝的概率為故答案為:【點睛】本題考查的是用列舉法等來求概率,找出所有可能的結果數和滿足要求的結果數是解決問題的關鍵.三、解答題(共78分)19、x1=-1+132,x2=【解析】利用公式法解方程即可.【詳解】∵a=1,b=1,c=﹣3,∴b2﹣4ac=1+12=13>1,∴x=﹣1∴x1=-1+132,x2=【點睛】本題主要考查解一元二次方程,熟練掌握一元二次方程的幾種解法是解答的關鍵.20、5%【分析】根據題意,列出方程即可求出x的值.【詳解】根據題意,得整理,得解這個方程,得,(不合題意,舍去)所以的值是5%.【點睛】此題考查的是一元二次方程的應用,掌握實際問題中的等量關系是解決此題的關鍵.21、(1)見解析;(2)見解析.【分析】(1)根據矩形ACBD即可解決問題.(2)利用平行線分線段成比例定理解決問題即可.【詳解】解:(1)如圖,線段CD即為所求.(2)如圖,線段EF即為所求,注意有兩種情形.【點睛】本題考查作圖-應用與設計,矩形的性質,平行線分線段成比例定理等知識,解題的關鍵是學會利用數形結合的思想解決問題.22、S四邊形ADBC=49(cm2).【分析】根據直徑所對的角是90°,判斷出△ABC和△ABD是直角三角形,根據圓周角∠ACB的平分線交⊙O于D,判斷出△ADB為等腰直角三角形,根據勾股定理求出AD、BD、AC的值,再根據S四邊形ADBC=S△ABD+S△ABC進行計算即可.【詳解】∵AB為直徑,∴∠ADB=90°,又∵CD平分∠ACB,即∠ACD=∠BCD,∴,∴AD=BD,∵直角△ABD中,AD=BD,AD2+BD2=AB2=102,則AD=BD=5,則S△ABD=AD?BD=×5×5=25(cm2),在直角△ABC中,AC==6(cm),則S△ABC=AC?BC=×6×8=24(cm2),則S四邊形ADBC=S△ABD+S△ABC=25+24=49(cm2).【點睛】本題考查了圓周角定理、三角形的面積等,正確求出相關的數值是解題的關鍵.23、或【分析】分別將已知的兩個等式相加和相減,得到(x+y)2+(x+y)=30,(x+y-1)(x﹣y)=﹣6,即可求得x、y的值,再求代數式的值即可.【詳解】解:由x2+xy+y=12①,y2+xy+x=18②,①+②,得(x+y)2+(x+y)=30③,①﹣②,得(x+y-1)(x﹣y)=﹣6④,由③得(x+y+6)(x+y﹣5)=0,∴x+y=﹣6或x+y=5⑤,∴將⑤分別代入④得,x﹣y=或x﹣y=﹣,∴或當時,當時,
故答案為:或【點睛】本題考查解二元一次方程組;理解題意,將已知式子進行合理的變形,再求二元一次方程組的解是解題的關鍵.24、(1)見解析;(2)AD=.【分析】(1)連接OC,根據等邊對等角,以及角平分線的定義,即可證得∠OCB=∠EBC,則OC∥BE,從而證得OC⊥CD,即CD是⊙O的切線;(2)根據勾股定理和相似三角形的判定和性質即可得到結論.【詳解】證明:(1)連接OC.∵OC=OB,∴∠ABC=∠OCB,又∵∠EBC=∠ABC,∴∠OCB=∠EBC,∴OC∥BE,∵BE⊥CD,∴OC⊥CD,∴CD是⊙O的切線;(2)設AB=x,∵AB是⊙O的直徑,∴∠ACB=90°,∴直角△ABC中,AC=AB?cos∠CAB=,∴BC===x,∵∠BCE+∠BCO=∠CAB+∠ABC=90°,∵OC=OB,∴∠OCB=∠OBC,∴∠CAB=∠BCE,∵∠E=∠ACB=90°,∴△ACB∽△CEB,∴=,∴=,∴x=,∴AB=,BC=5,∵△ACB∽△CEB,∴∠CAB=∠ECB=cos∠CAB=∴BE=2,∵OC∥BE,∴△DOC
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《直接能源ATP》課件
- 幼兒園工作總結笑容滿園
- 探索學術之路
- 公司人員述職報告匯編9篇
- 幼兒園工作總結傳遞溫暖收獲微笑
- 2023-2024年項目部安全培訓考試題含答案(培優(yōu)B卷)
- 2023年項目管理人員安全培訓考試題附答案(研優(yōu)卷)
- 《電廠職業(yè)病防治》課件
- 激發(fā)學習動力教學策略報告
- 中醫(yī)理療師年度總結
- 最新VTE指南解讀(靜脈血栓栓塞癥的臨床護理指南解讀)
- 生產計劃控制程序文件
- 中學校本課程教材《生活中的化學》
- 污水處理站運行維護管理方案
- 農村公路養(yǎng)護工程施工組織設計
- 個人如何開辦婚介公司,婚介公司經營和管理
- 公司物流倉儲規(guī)劃方案及建議書
- 天津市歷年社會保險繳費基數、比例
- 2024國家開放大學電大??啤秾W前兒童發(fā)展心理學》期末試題及答案
- 汽車座椅面套縫紉工時定額的研究
- 立體幾何??级ɡ砜偨Y(八大定理)
評論
0/150
提交評論