版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每題4分,共48分)1.將拋物線y=-2x2向左平移3個單位,再向下平移4個單位,所得拋物線為()A. B.C. D.2.下列計算正確的是()A. B.C. D.3.在Rt△ABC中,∠C=90°,AB=5,BC=3,則tanA的值是()A. B. C. D.4.若將拋物線的函數(shù)圖象先向右平移1個單位,再向下平移2個單位后,可得到一個新的拋物線的圖象,則所得到的新的拋物線的解析式為()A. B.C. D.5.一元二次方程配方后化為()A. B. C. D.6.如圖,在正方形中,為邊上的點,連結,將繞點逆時針方向旋轉得到,連結,若,則的度數(shù)為()A. B. C. D.7.把多項式分解因式,結果正確的是()A. B.C. D.8.在二次函數(shù)的圖像中,若隨的增大而增大,則的取值范圍是A. B. C. D.9.如圖,正方形ABCD的邊長為3cm,動點P從B點出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運動,到達A點停止運動;另一動點Q同時從B點出發(fā),以1cm/s的速度沿著邊BA向A點運動,到達A點停止運動.設P點運動時間為x(s),△BPQ的面積為y(cm2),則y關于x的函數(shù)圖象是()A. B. C. D.10.若一次函數(shù)y=ax+b(a≠0)的圖象與x軸的交點坐標為(﹣2,0),則拋物線y=ax2+bx的對稱軸為()A.直線x=1 B.直線x=﹣2 C.直線x=﹣1 D.直線x=﹣411.如圖,△ABC中,∠C=90°,AC=3,∠B=30°,點P是BC邊上的動點,則AP的長不可能是()A.3.5 B.4.2 C.5.8 D.712.斜坡坡角等于,一個人沿著斜坡由到向上走了米,下列結論①斜坡的坡度是;
②這個人水平位移大約米;③這個人豎直升高米;
④由看的俯角為.其中正確的個數(shù)是()A.1個 B.2個 C.3個 D.4個二、填空題(每題4分,共24分)13.如圖,P是∠α的邊OA上一點,且點P的坐標為(3,4),則=____________.14.如圖,在扇形AOB中,∠AOB=90°,點C為OA的中點,CE⊥OA交于點E,以點O為圓心,OC的長為半徑作交OB于點D,若OA=2,則陰影部分的面積為.15.《算學寶鑒》中記載了我國南宋數(shù)學家楊輝提出的一個問題:直田積八百六十四步,只云闊不及長一十二步.問闊及長各幾步?大意是“一個矩形田地的面積等于864平方步,它的寬比長少12步,問長與寬各多少步?”若設矩形田地的寬為x步,則所列方程為__________.16.在一個不透明的布袋里裝有若干個只有顏色不同的紅球和白球,其中有3個紅球,且從布袋中隨機摸出1個球是紅球的概率是三分之一,則白球的個數(shù)是______17.在Rt△ABC中,兩直角邊的長分別為6和8,則這個三角形的外接圓半徑長為_____.18.如圖,點是反比例函數(shù)的圖象上的一點,過點作平行四邊形,使點、在軸上,點在軸上,則平行四邊形的面積為______.三、解答題(共78分)19.(8分)小強在教學樓的點P處觀察對面的辦公大樓.為了測量點P到對面辦公大樓上部AD的距離,小強測得辦公大樓頂部點A的仰角為45°,測得辦公大樓底部點B的俯角為60°,已知辦公大樓高46米,CD=10米.求點P到AD的距離(用含根號的式子表示).20.(8分)如圖,點是正方形邊.上一點,連接,作于點,于點,連接.(1)求證:;(2)己知,四邊形的面積為,求的值.21.(8分)計算:.22.(10分)一次函數(shù)的圖像與x軸相交于點A,與y軸相交于點B,二次函數(shù)圖像經(jīng)過點A、B,與x軸相交于另一點C.(1)求a、b的值;(2)在直角坐標系中畫出該二次函數(shù)的圖像;(3)求∠ABC的度數(shù).23.(10分)圖1和圖2中的正方形ABCD和四邊形AEFG都是正方形.(1)如圖1,連接DE,BG,M為線段BG的中點,連接AM,探究AM與DE的數(shù)量關系和位置關系,并證明你的結論;(2)在圖1的基礎上,將正方形AEFG繞點A逆時針方向旋轉到圖2的位置,連結DE、BG,M為線段BG的中點,連結AM,探究AM與DE的數(shù)量關系和位置關系,并證明你的結論.24.(10分)為了提高學生對毒品危害性的認識,我市相關部門每個月都要對學生進行“禁毒知識應知應會”測評.為了激發(fā)學生的積極性,某校對達到一定成績的學生授予“禁毒小衛(wèi)士”的榮譽稱號.為了確定一個適當?shù)莫剟钅繕耍撔kS機選取了七年級20名學生在5月份測評的成績,數(shù)據(jù)如下:收集數(shù)據(jù):9091899690989097919899979188909795909588(1)根據(jù)上述數(shù)據(jù),將下列表格補充完整.整理、描述數(shù)據(jù):成績/分888990919596979899學生人數(shù)2132121數(shù)據(jù)分析:樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù)如下表:平均數(shù)眾數(shù)中位數(shù)9391得出結論:(2)根據(jù)所給數(shù)據(jù),如果該校想確定七年級前50%的學生為“良好”等次,你認為“良好”等次的測評成績至少定為分.數(shù)據(jù)應用:(3)根據(jù)數(shù)據(jù)分析,該校決定在七年級授予測評成績前30%的學生“禁毒小衛(wèi)士”榮譽稱號,請估計評選該榮譽稱號的最低分數(shù),并說明理由.25.(12分)如圖,小明在地面A處利用測角儀觀測氣球C的仰角為37°,然后他沿正對氣球方向前進了40m到達地面B處,此時觀測氣球的仰角為45°.求氣球的高度是多少?參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.7526.如圖,在平面直角坐標系中,二次函數(shù)的圖象交坐標軸于A(﹣1,0),B(4,0),C(0,﹣4)三點,點P是直線BC下方拋物線上一動點.(1)求這個二次函數(shù)的解析式;(2)是否存在點P,使△POC是以OC為底邊的等腰三角形?若存在,求出P點坐標;若不存在,請說明理由;(3)動點P運動到什么位置時,△PBC面積最大,求出此時P點坐標和△PBC的最大面積.
參考答案一、選擇題(每題4分,共48分)1、B【解析】根據(jù)“左加右減、上加下減”的原則進行解答即可.【詳解】解:把拋物線y=-2x2先向左平移3個單位,再向下平移4個單位,所得的拋物線的解析式是y=-2(x+3)2-4,故選:B.【點睛】本題主要考查了二次函數(shù)的圖象與幾何變換,熟知函數(shù)圖象平移的法則是解答此題的關鍵.2、C【分析】分別根據(jù)合并同類項的法則、完全平方公式、冪的乘方以及同底數(shù)冪的乘法化簡即可判斷.【詳解】A、,故選項A不合題意;B.,故選項B不合題意;C.,故選項C符合題意;D.,故選項D不合題意,故選C.【點睛】本題考查了合并同類項、冪的運算以及完全平方公式,熟練掌握各運算的運算法則是解答本題的關鍵.3、A【解析】由勾股定理,得AC=,由正切函數(shù)的定義,得tanA=,故選A.4、C【分析】根據(jù)函數(shù)圖象平移的法則“左加右減,上加下減”的原則進行解答即可.【詳解】由“左加右減”的原則可知,將拋物線先向右平移1個單位可得到拋物線;由“上加下減”的原則可知,將拋物線先向下平移2個單位可得到拋物線.
故選:C.【點睛】本題考查的是二次函數(shù)的圖象與幾何變換,熟知函數(shù)圖象平移的法則是解答此題的關鍵.5、A【分析】先把常數(shù)項移到方程的右邊,再在方程兩邊同時加上一次項系數(shù)一半的平方,即可.【詳解】移項得:,方程兩邊同加上9,得:,即:,故選A.【點睛】本題主要考查解一元二次方程的配方法,熟練掌握完全平方公式,是解題的關鍵.6、D【分析】根據(jù)旋轉的性質可知,然后得出,最后利用即可求解.【詳解】∵繞點逆時針方向旋轉得到,∴,,∴.故選:D.【點睛】本題主要考查旋轉的性質及等腰直角三角形的性質,掌握旋轉的性質及等腰直角三角形的性質是解題的關鍵.7、B【分析】如果把乘法公式反過來,就可以把某些多項式分解因式,這種方法叫公式法.平方差公式:;完全平方公式:;【詳解】解:,故選B.【點睛】本題考查了分解因式,熟練運用平方差公式是解題的關鍵8、A【解析】∵二次函數(shù)的開口向下,∴所以在對稱軸的左側y隨x的增大而增大.∵二次函數(shù)的對稱軸是,∴.故選A.9、C【解析】試題分析:由題意可得BQ=x.①0≤x≤1時,P點在BC邊上,BP=3x,則△BPQ的面積=BP?BQ,解y=?3x?x=;故A選項錯誤;②1<x≤2時,P點在CD邊上,則△BPQ的面積=BQ?BC,解y=?x?3=;故B選項錯誤;③2<x≤3時,P點在AD邊上,AP=9﹣3x,則△BPQ的面積=AP?BQ,解y=?(9﹣3x)?x=;故D選項錯誤.故選C.考點:動點問題的函數(shù)圖象.10、C【解析】∵一次函數(shù)y=ax+b(a≠0)的圖象與x軸的交點坐標為(﹣2,0),∴﹣2a+b=0,即b=2a.∴拋物線y=ax2+bx的對稱軸為直線.故選C.11、D【詳解】解:根據(jù)垂線段最短,可知AP的長不可小于3∵△ABC中,∠C=90°,AC=3,∠B=30°,∴AB=1,∴AP的長不能大于1.∴故選D.12、C【解析】由題意對每個結論一一分析即可得出其中正確的個數(shù).【詳解】解:如圖,斜坡的坡度為tan30°==1:,正確.
②AB=20米,這個人水平位移是AC,
AC=AB?cos30°=20×≈17.3(米),正確.
③這個人豎直升高的距離是BC,
BC=AB?sin30°=20×=10(米),正確.
④由平行線的性質可得由B看A的俯角為30°.所以由B看A的俯角為60°不正確.
所以①②③正確.
故選:C.【點睛】此題考查的知識點是解直角三角形的應用-坡度坡角-仰角俯角問題,關鍵是熟練掌握相關概念.二、填空題(每題4分,共24分)13、【解析】∵點P的坐標為(3,4),∴OP=,∴.故答案為:.14、.【解析】試題解析:連接OE、AE,∵點C為OA的中點,∴∠CEO=30°,∠EOC=60°,∴△AEO為等邊三角形,∴S扇形AOE=∴S陰影=S扇形AOB-S扇形COD-(S扇形AOE-S△COE)===.15、【分析】如果設矩形田地的寬為x步,那么長就應該是(x+12)步,根據(jù)面積為864,即可得出方程.【詳解】解:設矩形田地的寬為x步,那么長就應該是(x+12)步,根據(jù)面積公式,得:;故答案為:.【點睛】本題為面積問題,考查了由實際問題抽象出一元二次方程,掌握好面積公式即可進行正確解答;矩形面積=矩形的長×矩形的寬.16、6【分析】設白球的個數(shù)是x個,根據(jù)列出算式,求出x的值即可.【詳解】解:設白球的個數(shù)是x個,根據(jù)題意得:解得:x=6.故答案為6.【點睛】本題考查了概率的知識.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.17、1【分析】根據(jù)直角三角形外接圓的直徑是斜邊的長進行求解即可.【詳解】由勾股定理得:AB==10,∵∠ACB=90°,∴AB是⊙O的直徑,∴這個三角形的外接圓直徑是10;∴這個三角形的外接圓半徑長為1,故答案為1.【點睛】本題考查了90度的圓周角所對的弦是直徑,熟練掌握是解題的關鍵.18、6【分析】作AH⊥OB于H,根據(jù)平行四邊形的性質得AD∥OB,則,再根據(jù)反比例函數(shù)(k)系數(shù)的幾何意義得到=6,即可求得答案.【詳解】作AH⊥軸于H,如圖,∵AD∥OB,∴AD⊥軸,∴四邊形AHOD為矩形,
∵AD∥OB,
∴,
∵點A是反比例函數(shù)的圖象上的一點,
∴,
∴.
故答案為:.【點睛】本題考查了反比例函數(shù)(k)系數(shù)的幾何意義:從反比例函數(shù)(k)圖象上任意一點向軸和軸作垂線,垂線與坐標軸所圍成的矩形面積為.三、解答題(共78分)19、.【分析】連接PA、PB,過點P作PM⊥AD于點M;延長BC,交PM于點N,將實際問題中的已知量轉化為直角三角形中的有關量,設PM=x米,在Rt△PMA中,表示出AM,在Rt△PNB中,表示出BN,由AM+BN=46米列出方程求解即可.【詳解】解:連結PA、PB,過點P作PM⊥AD于點M;延長BC,交PM于點N則∠APM=45°,∠BPM=60°,NM=10米設PM=x在Rt△PMA中,AM=PM×tan∠APM=xtan45°=x(米)在Rt△PNB中,BN=PN×tan∠BPM=(-10)tan60°=(-10)(米^由AM+BN=46米,得x+(x-10)=46解得,x==∴點P到AD的距離為米【點睛】此題考查了解直角三角形的知識,作出輔助線,構造直角三角形是解題的關鍵.20、(1)見解析;(2)【分析】(1)首先由正方形的性質得出BA=AD,∠BAD=90°,又由DE⊥AM于點E,BF⊥AM得出∠AFB=90°,∠DEA=90°,∠ABF=∠EAD,然后即可判定△ABF≌△DAE,即可得出BF=AE;(2)首先設AE=x,則BF=x,DE=AF=2,然后將四邊形的面積轉化為兩個三角形的面積之和,列出方程,得出BF,然后利用勾股定理得出BE,即可得解.【詳解】(1)證明:∵四邊形ABCD為正方形,∴BA=AD,∠BAD=90°,∵DE⊥AM于點E,BF⊥AM于點F,∴∠AFB=90°,∠DEA=90°,∵∠ABF+∠BAF=90°,∠EAD+∠BAF=90°,∴∠ABF=∠EAD,在△ABF和△DEA中,∴△ABF≌△DAE(AAS),∴BF=AE;(2)設AE=x,則BF=x,DE=AF=2,∵四邊形ABED的面積為24,∴?x?x+?x?2=24,解得x1=6,x2=﹣8(舍去),∴EF=x﹣2=4,在Rt△BEF中,BE==2,∴=.【點睛】此題主要考查正方形的性質以及三角形全等的判定與性質、勾股定理的運用,熟練掌握,即可解題.21、【分析】根據(jù)特殊角的三角函數(shù)值及絕對值、乘方、零指數(shù)次冪的定義進行計算即可.【詳解】原式【點睛】本題考查了實數(shù)的運算,熟練掌握運算法則是解本題的關鍵.22、(1),b=6;(2)見解析;(3)∠ABC=45°【分析】(1)根據(jù)已知條件求得點A、點B的坐標,再代入二次函數(shù)的解析式,即可求得答案;(2)根據(jù)列表、描點、依次連接即可畫出該二次函數(shù)的圖像;(3)作AD⊥BC,利用兩點之間的距離公式求得的邊長,再運用面積法求高的方法求得AD,最后用特殊角的三角函數(shù)值求得答案.【詳解】(1)∵一次函數(shù)的圖像與x軸相交于點A,與y軸相交于點B,∴令,則;令,則;∴點A、點B的坐標分別為:,∵二次函數(shù)圖像經(jīng)過點A、B,∴,解得:,∴,b=6;(2)由(1)知二次函數(shù)的解析式為:對稱軸為直線:,與x軸的交點為.x-2-100.5123y0460.25640二次函數(shù)的圖像如圖:(3)如圖,過A作AD⊥BC于D,AB=,CB=,,∵,,∴,解得:,在中,,∵,∴.故∠ABC=45°.【點睛】本題考查了一次函數(shù)和二次函數(shù)的性質,用待定系數(shù)法確定函數(shù)的解析式,勾股定理以及面積法求高的應用,解此題的關鍵是運用面積法求高的長,用特殊角的三角函數(shù)值求角的大小.23、(1)AM=DE,AM⊥DE,理由詳見解析;(2)AM=DE,AM⊥DE,理由詳見解析.【解析】試題分析:(1)AM=DE,AM⊥DE,理由是:先證明△DAE≌△BAG,得DE=BG,∠AED=∠AGB,再根據(jù)直角三角形斜邊的中線的性質得AM=BG,AM=BM,則AM=DE,由角的關系得∠MAB+∠AED=90°,所以∠AOE=90°,即AM⊥DE;(2)AM=DE,AM⊥DE,理由是:作輔助線構建全等三角形,證明△MNG≌△MAB和△AGN≌△EAD可以得出結論.試題解析:(1)AM=DE,AM⊥DE,理由是:如圖1,設AM交DE于點O,∵四邊形ABCD和四邊形AEFG都是正方形,∴AG=AE,AD=AB,∵∠DAE=∠BAG,∴△DAE≌△BAG,∴DE=BG,∠AED=∠AGB,在Rt△ABG中,∵M為線段BG的中點,∴AM=BG,AM=BM,∴AM=DE,∵AM=BM,∴∠MBA=∠MAB,∵∠AGB+∠MBA=90°,∴∠MAB+∠AED=90°,∴∠AOE=90°,即AM⊥DE;(2)AM=DE,AM⊥DE,理由是:如圖2,延長AM到N,使MN=AM,連接NG,∵MN=AM,MG=BM,∠NMG=∠BMA,∴△MNG≌△MAB,∴NG=AB,∠N=∠BAN,由(1)得:AB=AD,∴NG=AD,∵∠BAN+∠DAN=90°,∴∠N+∠DAN=90°,∴NG⊥AD,∴∠AGN+∠DAG=90°,∵∠DAG+∠DAE=∠EAG=90°,∴∠AGN=∠DAE,∵NG=AD,AG=AE,∴△AGN≌△EAD,∴AN=DE,∠N=∠ADE,∵∠N+∠DAN=90°,∴∠ADE+∠DAN=90°,∴AM⊥DE.考點:旋轉的性質;正方形的性質.24、(1)5;3;90;(2)91;(3)估計評選該榮譽稱號的最低分數(shù)為97分.理由見解析.【解析】(1)由題意即可得出結果;
(2)由20×50%=10,結合題意即可得出結論;
(3)由20×30%=6,即可得出結論.【詳解】(1)由題意得:90分的有5個;97分的有3個;出現(xiàn)次數(shù)最多的是90分,∴眾數(shù)是90分;故答案為:5;3;90;(2)20×50%=10,如果該校想確定七年級前50%的學生為“良好”等次,則“良好”等次的測評成績至少定為91分;故答案為:91;(3)估計評選該榮譽稱號的最低分數(shù)為97分;理由如下:∵20×30%=6,∴估計評選該榮譽稱號的最低分數(shù)為97分.【點睛】本題考查了眾數(shù)、中位數(shù)、用樣本估計總體等知識;熟練掌握眾數(shù)、中位數(shù)、用樣本估計總體是解題的關鍵.25、120m【分析】在Rt△ACD和Rt△BCD中,設CD=x,分別用x表示AD和BD的長度,然后根據(jù)已知AB=40m,列出方程求出x的值,繼而可求得氣球離地面的高度.【詳解】設CD=x,在Rt△BCD中,∵∠CBD=45
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學數(shù)學教育中情感教育的評價與反饋
- 2024年道路基層石灰土施工協(xié)議版
- 學院專業(yè)國際交流與合作中的知識產(chǎn)權保護
- WPS編制2024年施工項目協(xié)議范本版B版
- 二零二五年度離婚協(xié)議中子女教育費用分擔協(xié)議
- 2024美甲店會員卡銷售與服務合同3篇
- 小學語文教學與語感深度培養(yǎng)的實踐
- 2024版集成電路布圖設計許可合同
- 2025年度舞臺布景租賃與設計合同3篇
- 二零二五年度教師公寓項目施工環(huán)境保護合同3篇
- 企業(yè)EHS風險管理基礎智慧樹知到期末考試答案2024年
- 老年人肥胖癥的特點與保健方法
- (高清版)DZT 0284-2015 地質災害排查規(guī)范
- 駕駛員勞務派遣車輛管理方案
- 山東省濟南市市中區(qū)2022-2023學年二年級上學期期末數(shù)學試卷
- CSCO胃癌診療指南轉移性胃癌更新解讀
- 充電樁建設項目預算報告
- 《網(wǎng)絡安全等級保護條例》
- 宜昌市夷陵區(qū)2023-2024學年八年級上學期期末數(shù)學評估卷(含答案)
- 企劃品宣部人員架構及職責
- 高效復習+期末動員+高二上學期考前動員主題班會
評論
0/150
提交評論