2024年全國甲卷高考數(shù)學(xué)(文數(shù))真題試題(原卷版+含解析)_第1頁
2024年全國甲卷高考數(shù)學(xué)(文數(shù))真題試題(原卷版+含解析)_第2頁
2024年全國甲卷高考數(shù)學(xué)(文數(shù))真題試題(原卷版+含解析)_第3頁
2024年全國甲卷高考數(shù)學(xué)(文數(shù))真題試題(原卷版+含解析)_第4頁
2024年全國甲卷高考數(shù)學(xué)(文數(shù))真題試題(原卷版+含解析)_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024年高考全國甲卷數(shù)學(xué)(文)一、單選題1.集合SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.設(shè)SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.1 C.-1 D.23.若實(shí)數(shù)SKIPIF1<0滿足約束條件SKIPIF1<0,則SKIPIF1<0的最小值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.SKIPIF1<05.甲、乙、丙、丁四人排成一列,丙不在排頭,且甲或乙在排尾的概率是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.已知雙曲線SKIPIF1<0的上、下焦點(diǎn)分別為SKIPIF1<0,點(diǎn)SKIPIF1<0在該雙曲線上,則該雙曲線的離心率為(

)A.4 B.3 C.2 D.SKIPIF1<07.曲線SKIPIF1<0在SKIPIF1<0處的切線與坐標(biāo)軸圍成的面積為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<08.函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0的大致圖像為(

)A. B.C. D.9.已知SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<010.設(shè)SKIPIF1<0是兩個(gè)平面,SKIPIF1<0是兩條直線,且SKIPIF1<0.下列四個(gè)命題:①若SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0

②若SKIPIF1<0,則SKIPIF1<0③若SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0

④若SKIPIF1<0與SKIPIF1<0和SKIPIF1<0所成的角相等,則SKIPIF1<0其中所有真命題的編號(hào)是(

)A.①③ B.②④ C.①②③ D.①③④11.在SKIPIF1<0中內(nèi)角SKIPIF1<0所對(duì)邊分別為SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0二、填空題12.函數(shù)SKIPIF1<0在SKIPIF1<0上的最大值是.13.已知SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.14.曲線SKIPIF1<0與SKIPIF1<0在SKIPIF1<0上有兩個(gè)不同的交點(diǎn),則SKIPIF1<0的取值范圍為.三、解答題15.已知等比數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<0.(1)求SKIPIF1<0的通項(xiàng)公式;(2)求數(shù)列SKIPIF1<0的通項(xiàng)公式.16.如圖,在以A,B,C,D,E,F(xiàn)為頂點(diǎn)的五面體中,四邊形ABCD與四邊形ADEF均為等腰梯形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的中點(diǎn).(1)證明:SKIPIF1<0平面SKIPIF1<0;(2)求點(diǎn)SKIPIF1<0到SKIPIF1<0的距離.17.已知函數(shù)SKIPIF1<0.(1)求SKIPIF1<0的單調(diào)區(qū)間;(2)若SKIPIF1<0時(shí),證明:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立.18.設(shè)橢圓SKIPIF1<0的右焦點(diǎn)為SKIPIF1<0,點(diǎn)SKIPIF1<0在SKIPIF1<0上,且SKIPIF1<0軸.(1)求SKIPIF1<0的方程;(2)過點(diǎn)SKIPIF1<0的直線與SKIPIF1<0交于SKIPIF1<0兩點(diǎn),SKIPIF1<0為線段SKIPIF1<0的中點(diǎn),直線SKIPIF1<0交直線SKIPIF1<0于點(diǎn)SKIPIF1<0,證明:SKIPIF1<0軸.19.在平面直角坐標(biāo)系SKIPIF1<0中,以坐標(biāo)原點(diǎn)SKIPIF1<0為極點(diǎn),SKIPIF1<0軸的正半軸為極軸建立極坐標(biāo)系,曲線SKIPIF1<0的極坐標(biāo)方程為SKIPIF1<0.(1)寫出SKIPIF1<0的直角坐標(biāo)方程;(2)設(shè)直線l:SKIPIF1<0(SKIPIF1<0為參數(shù)),若SKIPIF1<0與l相交于SKIPIF1<0兩點(diǎn),若SKIPIF1<0,求SKIPIF1<0的值.20.實(shí)數(shù)SKIPIF1<0滿足SKIPIF1<0.(1)證明:SKIPIF1<0;(2)證明:SKIPIF1<0.2024年高考全國甲卷數(shù)學(xué)(文)一、單選題1.集合SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】根據(jù)題意得,對(duì)于集合SKIPIF1<0中的元素SKIPIF1<0,滿足SKIPIF1<0,則SKIPIF1<0可能的取值為SKIPIF1<0,即SKIPIF1<0,于是SKIPIF1<0.故選A2.設(shè)SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.1 C.-1 D.2【答案】D【解析】根據(jù)題意得,SKIPIF1<0,故SKIPIF1<0.故選D3.若實(shí)數(shù)SKIPIF1<0滿足約束條件SKIPIF1<0,則SKIPIF1<0的最小值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】實(shí)數(shù)SKIPIF1<0滿足SKIPIF1<0,作出可行域如圖:由SKIPIF1<0可得SKIPIF1<0,即SKIPIF1<0的幾何意義為SKIPIF1<0的截距的SKIPIF1<0,則該直線截距取最大值時(shí),SKIPIF1<0有最小值,此時(shí)直線SKIPIF1<0過點(diǎn)SKIPIF1<0,聯(lián)立SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0.故選D.4.等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.SKIPIF1<0【答案】D【分析】可以根據(jù)等差數(shù)列的基本量,即將題目條件全轉(zhuǎn)化成SKIPIF1<0和SKIPIF1<0來處理,亦可用等差數(shù)列的性質(zhì)進(jìn)行處理,或者特殊值法處理.【解析】方法1:利用等差數(shù)列的基本量由SKIPIF1<0,根據(jù)等差數(shù)列的求和公式,SKIPIF1<0,又SKIPIF1<0.故選D方法2:利用等差數(shù)列的性質(zhì)根據(jù)等差數(shù)列的性質(zhì),SKIPIF1<0,由SKIPIF1<0,根據(jù)等差數(shù)列的求和公式,SKIPIF1<0,故SKIPIF1<0.故選D方法3:特殊值法不妨取等差數(shù)列公差SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0.故選D5.甲、乙、丙、丁四人排成一列,丙不在排頭,且甲或乙在排尾的概率是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】分類討論甲乙的位置,得到符合條件的情況,然后根據(jù)古典概型計(jì)算公式進(jìn)行求解.【解析】當(dāng)甲排在排尾,乙排第一位,丙有SKIPIF1<0種排法,丁就SKIPIF1<0種,共SKIPIF1<0種;當(dāng)甲排在排尾,乙排第二位或第三位,丙有SKIPIF1<0種排法,丁就SKIPIF1<0種,共SKIPIF1<0種;于是甲排在排尾共SKIPIF1<0種方法,同理乙排在排尾共SKIPIF1<0種方法,于是共SKIPIF1<0種排法符合題意;基本事件總數(shù)顯然是SKIPIF1<0,根據(jù)古典概型的計(jì)算公式,丙不在排頭,甲或乙在排尾的概率為SKIPIF1<0.故選B6.已知雙曲線SKIPIF1<0的上、下焦點(diǎn)分別為SKIPIF1<0,點(diǎn)SKIPIF1<0在該雙曲線上,則該雙曲線的離心率為(

)A.4 B.3 C.2 D.SKIPIF1<0【答案】C【分析】由焦點(diǎn)坐標(biāo)可得焦距SKIPIF1<0,結(jié)合雙曲線定義計(jì)算可得SKIPIF1<0,即可得離心率.【解析】根據(jù)題意,SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0.故選C.7.曲線SKIPIF1<0在SKIPIF1<0處的切線與坐標(biāo)軸圍成的面積為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】先求出切線方程,再求出切線的截距,從而可求面積.【解析】SKIPIF1<0,所以SKIPIF1<0,故切線方程為SKIPIF1<0,故切線的橫截距為SKIPIF1<0,縱截距為SKIPIF1<0,故切線與坐標(biāo)軸圍成的面積為SKIPIF1<0故選A.8.函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0的大致圖像為(

)A. B.C. D.【答案】B【分析】利用函數(shù)的奇偶性可排除A、C,代入SKIPIF1<0可得SKIPIF1<0,可排除D.【解析】SKIPIF1<0,又函數(shù)定義域?yàn)镾KIPIF1<0,故該函數(shù)為偶函數(shù),AC錯(cuò)誤,又SKIPIF1<0,D錯(cuò)誤.故選B.9.已知SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】先將SKIPIF1<0弦化切求得SKIPIF1<0,再根據(jù)兩角和的正切公式即可求解.【解析】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故選B.10.設(shè)SKIPIF1<0是兩個(gè)平面,SKIPIF1<0是兩條直線,且SKIPIF1<0.下列四個(gè)命題:①若SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0

②若SKIPIF1<0,則SKIPIF1<0③若SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0

④若SKIPIF1<0與SKIPIF1<0和SKIPIF1<0所成的角相等,則SKIPIF1<0其中所有真命題的編號(hào)是(

)A.①③ B.②④ C.①②③ D.①③④【答案】A【分析】根據(jù)線面平行的判定定理即可判斷①;舉反例即可判斷②④;根據(jù)線面平行的性質(zhì)即可判斷③.【解析】①,當(dāng)SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0既不在SKIPIF1<0也不在SKIPIF1<0內(nèi),因?yàn)镾KIPIF1<0,SKIPIF1<0,則SKIPIF1<0且SKIPIF1<0,①正確;②,若SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0不一定垂直,②錯(cuò)誤;③,過直線SKIPIF1<0分別作兩平面與SKIPIF1<0分別相交于直線SKIPIF1<0和直線SKIPIF1<0,因?yàn)镾KIPIF1<0,過直線SKIPIF1<0的平面與平面SKIPIF1<0的交線為直線SKIPIF1<0,則根據(jù)線面平行的性質(zhì)定理知SKIPIF1<0,同理可得SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,則SKIPIF1<0平面SKIPIF1<0,因?yàn)镾KIPIF1<0平面SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,又因?yàn)镾KIPIF1<0,則SKIPIF1<0,③正確;④,若SKIPIF1<0與SKIPIF1<0和SKIPIF1<0所成的角相等,如果SKIPIF1<0,則SKIPIF1<0,④錯(cuò)誤;①③正確,故選A.11.在SKIPIF1<0中內(nèi)角SKIPIF1<0所對(duì)邊分別為SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】利用正弦定理得SKIPIF1<0,再利用余弦定理有SKIPIF1<0,再利用正弦定理得到SKIPIF1<0的值,最后代入計(jì)算即可.【解析】因?yàn)镾KIPIF1<0,則由正弦定理得SKIPIF1<0.根據(jù)余弦定理可得:SKIPIF1<0,即:SKIPIF1<0,根據(jù)正弦定理得SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0為三角形內(nèi)角,則SKIPIF1<0,則SKIPIF1<0.故選C.二、填空題12.函數(shù)SKIPIF1<0在SKIPIF1<0上的最大值是.【答案】2【分析】結(jié)合輔助角公式化簡成正弦型函數(shù),再求給定區(qū)間最值即可.【解析】SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),即SKIPIF1<0時(shí),SKIPIF1<0.答案為:213.已知SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.【答案】64【分析】將SKIPIF1<0利用換底公式轉(zhuǎn)化成SKIPIF1<0來表示即可求解.【解析】由題SKIPIF1<0,整理得SKIPIF1<0,SKIPIF1<0或SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0答案為:64.14.曲線SKIPIF1<0與SKIPIF1<0在SKIPIF1<0上有兩個(gè)不同的交點(diǎn),則SKIPIF1<0的取值范圍為.【答案】SKIPIF1<0【分析】將函數(shù)轉(zhuǎn)化為方程,令SKIPIF1<0,分離參數(shù)SKIPIF1<0,構(gòu)造新函數(shù)SKIPIF1<0結(jié)合導(dǎo)數(shù)求得SKIPIF1<0單調(diào)區(qū)間,畫出大致圖形數(shù)形結(jié)合即可求解.【解析】令SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0則SKIPIF1<0,令SKIPIF1<0得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增,SKIPIF1<0,因?yàn)榍€SKIPIF1<0與SKIPIF1<0在SKIPIF1<0上有兩個(gè)不同的交點(diǎn),所以等價(jià)于SKIPIF1<0與SKIPIF1<0有兩個(gè)交點(diǎn),所以SKIPIF1<0.答案為:SKIPIF1<0三、解答題15.已知等比數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<0.(1)求SKIPIF1<0的通項(xiàng)公式;(2)求數(shù)列SKIPIF1<0的通項(xiàng)公式.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【分析】(1)利用退位法可求公比,再求出首項(xiàng)后可求通項(xiàng);(2)利用等比數(shù)列的求和公式可求SKIPIF1<0.【解析】(1)因?yàn)镾KIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0即SKIPIF1<0故等比數(shù)列的公比為SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0.(2)根據(jù)等比數(shù)列求和公式得SKIPIF1<0.16.如圖,在以A,B,C,D,E,F(xiàn)為頂點(diǎn)的五面體中,四邊形ABCD與四邊形ADEF均為等腰梯形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的中點(diǎn).(1)證明:SKIPIF1<0平面SKIPIF1<0;(2)求點(diǎn)SKIPIF1<0到SKIPIF1<0的距離.【答案】(1)見詳解;(2)SKIPIF1<0【分析】(1)結(jié)合已知易證四邊形SKIPIF1<0為平行四邊形,可證SKIPIF1<0,進(jìn)而得證;(2)作SKIPIF1<0,連接SKIPIF1<0,易證SKIPIF1<0三垂直,結(jié)合等體積法SKIPIF1<0即可求解.【解析】(1)因?yàn)镾KIPIF1<0為SKIPIF1<0的中點(diǎn),所以SKIPIF1<0,四邊形SKIPIF1<0為平行四邊形,所以SKIPIF1<0,又因?yàn)镾KIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0;(2)如圖所示,作SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,連接SKIPIF1<0,因?yàn)樗倪呅蜸KIPIF1<0為等腰梯形,SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,結(jié)合(1)SKIPIF1<0為平行四邊形,可得SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0為等邊三角形,SKIPIF1<0為SKIPIF1<0中點(diǎn),所以SKIPIF1<0,又因?yàn)樗倪呅蜸KIPIF1<0為等腰梯形,SKIPIF1<0為SKIPIF1<0中點(diǎn),所以SKIPIF1<0,四邊形SKIPIF1<0為平行四邊形,SKIPIF1<0,所以SKIPIF1<0為等腰三角形,SKIPIF1<0與SKIPIF1<0底邊上中點(diǎn)SKIPIF1<0重合,SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0互相垂直,等體積法可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0到SKIPIF1<0的距離為SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,即點(diǎn)SKIPIF1<0到SKIPIF1<0的距離為SKIPIF1<0.17.已知函數(shù)SKIPIF1<0.(1)求SKIPIF1<0的單調(diào)區(qū)間;(2)若SKIPIF1<0時(shí),證明:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立.【答案】(1)見解析(2)見解析【分析】(1)求導(dǎo),含參分類討論得出導(dǎo)函數(shù)的符號(hào),從而得出原函數(shù)的單調(diào)性;(2)先根據(jù)題設(shè)條件將問題可轉(zhuǎn)化成證明當(dāng)SKIPIF1<0時(shí),SKIPIF1<0即可.【解析】(1)SKIPIF1<0定義域?yàn)镾KIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減.綜上所述,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.(2)SKIPIF1<0,且SKIPIF1<0時(shí),SKIPIF1<0,令SKIPIF1<0,下證SKIPIF1<0即可.SKIPIF1<0,再令SKIPIF1<0,則SKIPIF1<0,顯然SKIPIF1<0在SKIPIF1<0上遞增,則SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上遞增,故SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故SKIPIF1<0,問題得證18.設(shè)橢圓SKIPIF1<0的右焦點(diǎn)為SKIPIF1<0,點(diǎn)SKIPIF1<0在SKIPIF1<0上,且SKIPIF1<0軸.(1)求SKIPIF1<0的方程;(2)過點(diǎn)SKIPIF1<0的直線與SKIPIF1<0交于SKIPIF1<0兩點(diǎn),SKIPIF1<0為線段SKIPIF1<0的中點(diǎn),直線SKIPIF1<0交直線SKIPIF1<0于點(diǎn)SKIPIF1<0,證明:SKIPIF1<0軸.【答案】(1)SKIPIF1<0(2)見解析【分析】(1)設(shè)SKIPIF1<0,根據(jù)SKIPIF1<0的坐標(biāo)及SKIPIF1<0SKIPIF1<0軸可求基本量,故可求橢圓方程.(2)設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,聯(lián)立直線方程和橢圓方程,用SKIPIF1<0的坐標(biāo)表示SKIPIF1<0,結(jié)合韋達(dá)定理化簡前者可得SKIPIF1<0,故可證SKIPIF1<0軸.【解析】(1)設(shè)SKIPIF1<0,由題設(shè)有SKIPIF1<0且SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0,所以橢圓方程為SKIPIF1<0.(2)直線SKIPIF1<0的斜率必定存在,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0,又SKIPIF1<0,而SKIPIF1<0,故直線SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0軸.19.在平面直角坐標(biāo)系SKIPIF1<0中,以坐標(biāo)原點(diǎn)SKIPIF1<0為極點(diǎn),SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論