




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
北師大版高中數(shù)學(xué)必修知識(shí)點(diǎn)詳解教程一、教學(xué)內(nèi)容本講主要講解北師大版高中數(shù)學(xué)必修一第二章的“函數(shù)的性質(zhì)”。具體內(nèi)容包括:函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性以及函數(shù)的極值。二、教學(xué)目標(biāo)1.理解函數(shù)的單調(diào)性、奇偶性、周期性和極值的概念,并能夠運(yùn)用這些性質(zhì)解決實(shí)際問題。2.培養(yǎng)學(xué)生的邏輯思維能力和數(shù)學(xué)推理能力。3.提高學(xué)生運(yùn)用數(shù)學(xué)知識(shí)解決實(shí)際問題的能力。三、教學(xué)難點(diǎn)與重點(diǎn)1.教學(xué)難點(diǎn):函數(shù)的周期性的證明和應(yīng)用。2.教學(xué)重點(diǎn):函數(shù)的單調(diào)性、奇偶性的證明和應(yīng)用。四、教具與學(xué)具準(zhǔn)備1.教具:黑板、粉筆、多媒體教學(xué)設(shè)備。2.學(xué)具:筆記本、筆、計(jì)算器。五、教學(xué)過程1.實(shí)踐情景引入:通過生活中的實(shí)際問題,引出函數(shù)的單調(diào)性的概念。2.知識(shí)講解:講解函數(shù)的單調(diào)性的定義、性質(zhì)和證明方法。3.例題講解:講解幾個(gè)典型的函數(shù)單調(diào)性例題,引導(dǎo)學(xué)生掌握單調(diào)性的證明方法。4.隨堂練習(xí):讓學(xué)生獨(dú)立完成一些單調(diào)性的證明題目,鞏固所學(xué)知識(shí)。5.知識(shí)拓展:介紹函數(shù)的奇偶性、周期性和極值的概念。6.例題講解:講解一些含有奇偶性、周期性和極值的例題,引導(dǎo)學(xué)生運(yùn)用這些性質(zhì)解決實(shí)際問題。7.隨堂練習(xí):讓學(xué)生獨(dú)立完成一些含有奇偶性、周期性和極值的實(shí)際問題,提高學(xué)生運(yùn)用數(shù)學(xué)知識(shí)解決實(shí)際問題的能力。六、板書設(shè)計(jì)1.函數(shù)的單調(diào)性:定義、性質(zhì)、證明方法。2.函數(shù)的奇偶性:定義、性質(zhì)、證明方法。3.函數(shù)的周期性:定義、性質(zhì)、證明方法。4.函數(shù)的極值:定義、性質(zhì)、證明方法。七、作業(yè)設(shè)計(jì)1.作業(yè)題目:(1)證明函數(shù)f(x)=x^33x在區(qū)間[1,1]上單調(diào)遞減。(2)求函數(shù)f(x)=x^22x+1的極值。(3)判斷函數(shù)f(x)=sin(x)的奇偶性。2.答案:(1)證明:f'(x)=3x^23,令f'(x)<0,得x<1或x>1。所以在區(qū)間[1,1]上,f(x)單調(diào)遞減。(2)解:f'(x)=2x2,令f'(x)=0,得x=1。所以f(x)在x=1處取得極小值,極小值為f(1)=0。(3)解:f(x)=sin(x)=sin(x),所以f(x)為奇函數(shù)。八、課后反思及拓展延伸1.課后反思:本節(jié)課學(xué)生對(duì)函數(shù)的單調(diào)性、奇偶性、周期性和極值的掌握情況較好,但在運(yùn)用這些性質(zhì)解決實(shí)際問題時(shí),部分學(xué)生還存在一定的困難。在今后的教學(xué)中,應(yīng)加強(qiáng)這方面的訓(xùn)練。2.拓展延伸:介紹函數(shù)的導(dǎo)數(shù)在實(shí)際問題中的應(yīng)用,如優(yōu)化問題、物理問題等。重點(diǎn)和難點(diǎn)解析一、教學(xué)內(nèi)容本講主要講解北師大版高中數(shù)學(xué)必修一第二章的“函數(shù)的性質(zhì)”。具體內(nèi)容包括:函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性以及函數(shù)的極值。二、教學(xué)目標(biāo)1.理解函數(shù)的單調(diào)性、奇偶性、周期性和極值的概念,并能夠運(yùn)用這些性質(zhì)解決實(shí)際問題。2.培養(yǎng)學(xué)生的邏輯思維能力和數(shù)學(xué)推理能力。3.提高學(xué)生運(yùn)用數(shù)學(xué)知識(shí)解決實(shí)際問題的能力。四、教具與學(xué)具準(zhǔn)備1.教具:黑板、粉筆、多媒體教學(xué)設(shè)備。2.學(xué)具:筆記本、筆、計(jì)算器。五、教學(xué)過程1.實(shí)踐情景引入:通過生活中的實(shí)際問題,引出函數(shù)的單調(diào)性的概念。2.知識(shí)講解:講解函數(shù)的單調(diào)性的定義、性質(zhì)和證明方法。重點(diǎn)和難點(diǎn)解析:函數(shù)的單調(diào)性是描述函數(shù)值隨自變量變化的一個(gè)性質(zhì)。如果對(duì)于定義域內(nèi)的任意兩個(gè)不同的實(shí)數(shù)x1和x2,當(dāng)x1<x2時(shí),都有f(x1)≤f(x2),則稱函數(shù)f(x)在定義域上單調(diào)遞增;反之,如果對(duì)于定義域內(nèi)的任意兩個(gè)不同的實(shí)數(shù)x1和x2,當(dāng)x1<x2時(shí),都有f(x1)≥f(x2),則稱函數(shù)f(x)在定義域上單調(diào)遞減。函數(shù)的單調(diào)性可以通過導(dǎo)數(shù)來判斷,如果函數(shù)在某個(gè)區(qū)間內(nèi)的導(dǎo)數(shù)大于0,則函數(shù)在該區(qū)間內(nèi)單調(diào)遞增;如果函數(shù)在某個(gè)區(qū)間內(nèi)的導(dǎo)數(shù)小于0,則函數(shù)在該區(qū)間內(nèi)單調(diào)遞減。3.例題講解:講解幾個(gè)典型的函數(shù)單調(diào)性例題,引導(dǎo)學(xué)生掌握單調(diào)性的證明方法。重點(diǎn)和難點(diǎn)解析:在講解函數(shù)單調(diào)性的例題時(shí),可以通過繪制函數(shù)圖像或者利用導(dǎo)數(shù)來判斷函數(shù)的單調(diào)性。例如,對(duì)于函數(shù)f(x)=x^33x,我們可以求出它的導(dǎo)數(shù)f'(x)=3x^23,然后判斷導(dǎo)數(shù)的符號(hào)來確定函數(shù)的單調(diào)性。通過這樣的方法,學(xué)生可以更好地理解和掌握函數(shù)單調(diào)性的證明方法。4.隨堂練習(xí):讓學(xué)生獨(dú)立完成一些單調(diào)性的證明題目,鞏固所學(xué)知識(shí)。5.知識(shí)拓展:介紹函數(shù)的奇偶性、周期性和極值的概念。6.例題講解:講解一些含有奇偶性、周期性和極值的例題,引導(dǎo)學(xué)生運(yùn)用這些性質(zhì)解決實(shí)際問題。重點(diǎn)和難點(diǎn)解析:在講解含有奇偶性、周期性和極值的例題時(shí),可以結(jié)合具體的函數(shù)來進(jìn)行分析。例如,對(duì)于奇函數(shù)f(x)=sin(x),我們可以利用它的奇偶性質(zhì)來解決一些與對(duì)稱性相關(guān)的問題;對(duì)于周期函數(shù)f(x)=cos(x),我們可以利用它的周期性質(zhì)來解決一些與周期性相關(guān)的問題;對(duì)于函數(shù)f(x)=x^22x+1,我們可以求出它的導(dǎo)數(shù)f'(x)=2x2,然后令導(dǎo)數(shù)等于0來求解極值點(diǎn),進(jìn)而得到極值。通過這樣的方法,學(xué)生可以更好地理解和運(yùn)用奇偶性、周期性和極值來解決實(shí)際問題。7.隨堂練習(xí):讓學(xué)生獨(dú)立完成一些含有奇偶性、周期性和極值的實(shí)際問題,提高學(xué)生運(yùn)用數(shù)學(xué)知識(shí)解決實(shí)際問題的能力。六、板書設(shè)計(jì)1.函數(shù)的單調(diào)性:定義、性質(zhì)、證明方法。2.函數(shù)的奇偶性:定義、性質(zhì)、證明方法。3.函數(shù)的周期性:定義、性質(zhì)、證明方法。4.函數(shù)的極值:定義、性質(zhì)、證明方法。七、作業(yè)設(shè)計(jì)1.作業(yè)題目:(1)證明函數(shù)f(x)=x^33x在區(qū)間[1,1]上單調(diào)遞減。(2)求函數(shù)f(x)=x^22x+1的極值。(3)判斷函數(shù)f(x)=sin(x)的奇偶性。2.答案:(1)證明:f'(x)=3x^23,令f'(x)<0,得x<1或x>1。所以在區(qū)間[1本節(jié)課程教學(xué)技巧和竅門一、語言語調(diào)在講解本節(jié)課的內(nèi)容時(shí),教師應(yīng)該使用清晰、簡(jiǎn)潔的語言,語調(diào)要適度,既要平穩(wěn)又要富有變化。對(duì)于一些重要的概念和性質(zhì),可以使用強(qiáng)調(diào)的語調(diào),以引起學(xué)生的注意。同時(shí),教師可以適當(dāng)使用一些幽默的語言,以激發(fā)學(xué)生的學(xué)習(xí)興趣。二、時(shí)間分配1.實(shí)踐情景引入:5分鐘2.知識(shí)講解:15分鐘3.例題講解:20分鐘4.隨堂練習(xí):10分鐘5.知識(shí)拓展:10分鐘6.隨堂練習(xí):10分鐘7.課堂小結(jié):5分鐘三、課堂提問在教學(xué)過程中,教師應(yīng)該適時(shí)進(jìn)行課堂提問,以檢查學(xué)生對(duì)知識(shí)的理解和掌握情況??梢葬槍?duì)一些關(guān)鍵的概念和性質(zhì)進(jìn)行提問,引導(dǎo)學(xué)生進(jìn)行思考和討論。同時(shí),教師應(yīng)該鼓勵(lì)學(xué)生積極提問,解答他們的疑惑。四、情景導(dǎo)入在講解本節(jié)課的內(nèi)容時(shí),教師可以通過一些實(shí)際問題或者生活情境來引入函數(shù)的性質(zhì)。例如,可以通過一些實(shí)際問題,如商品價(jià)格的變動(dòng)、物體運(yùn)動(dòng)的軌跡等,來引出函數(shù)的單調(diào)性、奇偶性、周期性和極值的概念。這
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年社會(huì)公共安全設(shè)備及器材項(xiàng)目建議書
- 信貸房屋租賃合同范本
- 公司對(duì)個(gè)人建筑合同范本
- 醫(yī)院收銀合同范本
- 2013新建施工合同范本
- 內(nèi)審財(cái)務(wù)合同范本
- 醫(yī)藥銷售合同范本
- 養(yǎng)生行業(yè)勞動(dòng)合同范本
- 合同范例工程結(jié)算時(shí)間
- 污泥處理行業(yè)分析研究報(bào)告
- 中學(xué)教學(xué)課件:下第課《認(rèn)識(shí)人工智能》課件
- 山東省淄博市周村區(qū)(五四制)2023-2024學(xué)年七年級(jí)下學(xué)期期中考試英語試題
- 2024至2030年中國(guó)蜜柚行業(yè)市場(chǎng)發(fā)展現(xiàn)狀及潛力分析研究報(bào)告
- 高達(dá)模型市場(chǎng)需求與消費(fèi)特點(diǎn)分析
- XX小學(xué)法治副校長(zhǎng)(派出所民警)法制教育課講稿
- 人音版音樂一年級(jí)上冊(cè)第3課《國(guó)旗國(guó)旗真美麗》說課稿
- 腸系膜上動(dòng)脈栓塞護(hù)理查房課件
- DL∕T 2528-2022 電力儲(chǔ)能基本術(shù)語
- 產(chǎn)品研發(fā)指導(dǎo)專家聘用協(xié)議書
- 【正版授權(quán)】 IEC 60268-5:2003/AMD1:2007 EN-FR Amendment 1 - Sound system equipment - Part 5: Loudspeakers
- 2024年晉中職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)技能測(cè)試題庫完整參考答案
評(píng)論
0/150
提交評(píng)論