2022年四川省廣安遂寧資陽等六市數(shù)學高三上期末質(zhì)量檢測試題含解析_第1頁
2022年四川省廣安遂寧資陽等六市數(shù)學高三上期末質(zhì)量檢測試題含解析_第2頁
2022年四川省廣安遂寧資陽等六市數(shù)學高三上期末質(zhì)量檢測試題含解析_第3頁
2022年四川省廣安遂寧資陽等六市數(shù)學高三上期末質(zhì)量檢測試題含解析_第4頁
2022年四川省廣安遂寧資陽等六市數(shù)學高三上期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2022-2023學年高三上數(shù)學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的左、右焦點分別為,,點P是C的右支上一點,連接與y軸交于點M,若(O為坐標原點),,則雙曲線C的漸近線方程為()A. B. C. D.2.已知橢圓,直線與直線相交于點,且點在橢圓內(nèi)恒成立,則橢圓的離心率取值范圍為()A. B. C. D.3.某四棱錐的三視圖如圖所示,則該四棱錐的體積為()A. B. C. D.4.中國古代數(shù)學著作《算法統(tǒng)宗》中有這樣一個問題:“三百七十八里關,初行健步不為難,次日腳痛減一半,六朝才得到其關,要見次日行里數(shù),請公仔細算相還.”意思為有一個人要走378里路,第一天健步行走,從第二天起腳痛,每天走的路程為前一天的一半,走了六天恰好到達目的地,請問第二天比第四天多走了()A.96里 B.72里 C.48里 D.24里5.已知正方體的體積為,點,分別在棱,上,滿足最小,則四面體的體積為A. B. C. D.6.已知的共軛復數(shù)是,且(為虛數(shù)單位),則復數(shù)在復平面內(nèi)對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.關于的不等式的解集是,則關于的不等式的解集是()A. B.C. D.8.點在曲線上,過作軸垂線,設與曲線交于點,,且點的縱坐標始終為0,則稱點為曲線上的“水平黃金點”,則曲線上的“水平黃金點”的個數(shù)為()A.0 B.1 C.2 D.39.執(zhí)行如圖所示的程序框圖,則輸出的值為()A. B. C. D.10.設等差數(shù)列的前項和為,若,則()A.10 B.9 C.8 D.711.設集合,則()A. B. C. D.12.關于函數(shù)有下述四個結(jié)論:()①是偶函數(shù);②在區(qū)間上是單調(diào)遞增函數(shù);③在上的最大值為2;④在區(qū)間上有4個零點.其中所有正確結(jié)論的編號是()A.①②④ B.①③ C.①④ D.②④二、填空題:本題共4小題,每小題5分,共20分。13.六位同學坐在一排,現(xiàn)讓六位同學重新坐,恰有兩位同學坐自己原來的位置,則不同的坐法有________種(用數(shù)字回答).14.假設10公里長跑,甲跑出優(yōu)秀的概率為,乙跑出優(yōu)秀的概率為,丙跑出優(yōu)秀的概率為,則甲、乙、丙三人同時參加10公里長跑,剛好有2人跑出優(yōu)秀的概率為________.15.過直線上一動點向圓引兩條切線MA,MB,切點為A,B,若,則四邊形MACB的最小面積的概率為________.16.如圖是九位評委打出的分數(shù)的莖葉統(tǒng)計圖,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的平均分為_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知,點分別為橢圓的左、右頂點,直線交于另一點為等腰直角三角形,且.(Ⅰ)求橢圓的方程;(Ⅱ)設過點的直線與橢圓交于兩點,總使得為銳角,求直線斜率的取值范圍.18.(12分)已知橢圓:的左、右焦點分別為,,焦距為2,且經(jīng)過點,斜率為的直線經(jīng)過點,與橢圓交于,兩點.(1)求橢圓的方程;(2)在軸上是否存在點,使得以,為鄰邊的平行四邊形是菱形?如果存在,求出的取值范圍,如果不存在,請說明理由.19.(12分)電視傳媒公司為了解某地區(qū)觀眾對某體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調(diào)查,其中女性有55名,下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖:將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”.(1)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否認為“體育迷”與性別有關?非體育迷體育迷合計男女1055合計(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為X.若每次抽取的結(jié)果是相互獨立的,求X的分布列,期望E(X)和方差D(X).附:.P(K2≥k)0.050.01k3.8416.63520.(12分)在直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,點的極坐標為.(1)求的直角坐標方程和的直角坐標;(2)設與交于,兩點,線段的中點為,求.21.(12分)如圖,⊙的直徑的延長線與弦的延長線相交于點,為⊙上一點,,交于點.求證:~.22.(10分)在直角坐標系中,直線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為,(為參數(shù)).以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.(Ⅰ)求的極坐標方程和的直角坐標方程;(Ⅱ)設分別交于兩點(與原點不重合),求的最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

利用三角形與相似得,結(jié)合雙曲線的定義求得的關系,從而求得雙曲線的漸近線方程。【詳解】設,,由,與相似,所以,即,又因為,所以,,所以,即,,所以雙曲線C的漸近線方程為.故選:C.【點睛】本題考查雙曲線幾何性質(zhì)、漸近線方程求解,考查數(shù)形結(jié)合思想,考查邏輯推理能力和運算求解能力。2、A【解析】

先求得橢圓焦點坐標,判斷出直線過橢圓的焦點.然后判斷出,判斷出點的軌跡方程,根據(jù)恒在橢圓內(nèi)列不等式,化簡后求得離心率的取值范圍.【詳解】設是橢圓的焦點,所以.直線過點,直線過點,由于,所以,所以點的軌跡是以為直徑的圓.由于點在橢圓內(nèi)恒成立,所以橢圓的短軸大于,即,所以,所以雙曲線的離心率,所以.故選:A【點睛】本小題主要考查直線與直線的位置關系,考查動點軌跡的判斷,考查橢圓離心率的取值范圍的求法,屬于中檔題.3、B【解析】

由三視圖知該四棱錐是底面為正方形,且一側(cè)棱垂直于底面,由此求出四棱錐的體積.【詳解】由三視圖知該四棱錐是底面為正方形,且一側(cè)棱垂直于底面,畫出四棱錐的直觀圖,如圖所示:則該四棱錐的體積為.故選:B.【點睛】本題考查了利用三視圖求幾何體體積的問題,是基礎題.4、B【解析】

人每天走的路程構(gòu)成公比為的等比數(shù)列,設此人第一天走的路程為,計算,代入得到答案.【詳解】由題意可知此人每天走的路程構(gòu)成公比為的等比數(shù)列,設此人第一天走的路程為,則,解得,從而可得,故.故選:.【點睛】本題考查了等比數(shù)列的應用,意在考查學生的計算能力和應用能力.5、D【解析】

由題意畫出圖形,將所在的面延它們的交線展開到與所在的面共面,可得當時最小,設正方體的棱長為,得,進一步求出四面體的體積即可.【詳解】解:如圖,

∵點M,N分別在棱上,要最小,將所在的面延它們的交線展開到與所在的面共面,三線共線時,最小,

設正方體的棱長為,則,∴.

取,連接,則共面,在中,設到的距離為,

設到平面的距離為,

.

故選D.【點睛】本題考查多面體體積的求法,考查了多面體表面上的最短距離問題,考查計算能力,是中檔題.6、D【解析】

設,整理得到方程組,解方程組即可解決問題.【詳解】設,因為,所以,所以,解得:,所以復數(shù)在復平面內(nèi)對應的點為,此點位于第四象限.故選D【點睛】本題主要考查了復數(shù)相等、復數(shù)表示的點知識,考查了方程思想,屬于基礎題.7、A【解析】

由的解集,可知及,進而可求出方程的解,從而可求出的解集.【詳解】由的解集為,可知且,令,解得,,因為,所以的解集為,故選:A.【點睛】本題考查一元一次不等式、一元二次不等式的解集,考查學生的計算求解能力與推理能力,屬于基礎題.8、C【解析】

設,則,則,即可得,設,利用導函數(shù)判斷的零點的個數(shù),即為所求.【詳解】設,則,所以,依題意可得,設,則,當時,,則單調(diào)遞減;當時,,則單調(diào)遞增,所以,且,有兩個不同的解,所以曲線上的“水平黃金點”的個數(shù)為2.故選:C【點睛】本題考查利用導函數(shù)處理零點問題,考查向量的坐標運算,考查零點存在性定理的應用.9、B【解析】

列出每一次循環(huán),直到計數(shù)變量滿足退出循環(huán).【詳解】第一次循環(huán):;第二次循環(huán):;第三次循環(huán):,退出循環(huán),輸出的為.故選:B.【點睛】本題考查由程序框圖求輸出的結(jié)果,要注意在哪一步退出循環(huán),是一道容易題.10、B【解析】

根據(jù)題意,解得,,得到答案.【詳解】,解得,,故.故選:.【點睛】本題考查了等差數(shù)列的求和,意在考查學生的計算能力.11、C【解析】

解對數(shù)不等式求得集合,由此求得兩個集合的交集.【詳解】由,解得,故.依題意,所以.故選:C【點睛】本小題主要考查對數(shù)不等式的解法,考查集合交集的概念和運算,屬于基礎題.12、C【解析】

根據(jù)函數(shù)的奇偶性、單調(diào)性、最值和零點對四個結(jié)論逐一分析,由此得出正確結(jié)論的編號.【詳解】的定義域為.由于,所以為偶函數(shù),故①正確.由于,,所以在區(qū)間上不是單調(diào)遞增函數(shù),所以②錯誤.當時,,且存在,使.所以當時,;由于為偶函數(shù),所以時,所以的最大值為,所以③錯誤.依題意,,當時,,所以令,解得,令,解得.所以在區(qū)間,有兩個零點.由于為偶函數(shù),所以在區(qū)間有兩個零點.故在區(qū)間上有4個零點.所以④正確.綜上所述,正確的結(jié)論序號為①④.故選:C【點睛】本小題主要考查三角函數(shù)的奇偶性、單調(diào)性、最值和零點,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、135【解析】

根據(jù)題意先確定2個人位置不變,共有種選擇,再確定4個人坐4個位置,但是不能坐原來的位置,計算得到答案.【詳解】根據(jù)題意先確定2個人位置不變,共有種選擇.再確定4個人坐4個位置,但是不能坐原來的位置,共有種選擇,故不同的坐法有.故答案為:.【點睛】本題考查了分步乘法原理,意在考查學生的計算能力和應用能力.14、【解析】

分跑出優(yōu)秀的人為:甲、乙和甲、丙和乙、丙三種情況分別計算再求和即可.【詳解】剛好有2人跑出優(yōu)秀有三種情況:其一是只有甲、乙兩人跑出優(yōu)秀的概率為;其二是只有甲、丙兩人跑出優(yōu)秀的概率為;其三是只有乙、丙兩人跑出優(yōu)秀的概率為,三種情況相加得.即剛好有2人跑出優(yōu)秀的概率為.故答案為:【點睛】本題主要考查了分類方法求解事件概率的問題,屬于基礎題.15、.【解析】

先求圓的半徑,四邊形的最小面積,轉(zhuǎn)化為的最小值為,求出切線長的最小值,再求的距離也就是圓心到直線的距離,可解得的取值范圍,利用幾何概型即可求得概率.【詳解】由圓的方程得,所以圓心為,半徑為,四邊形的面積,若四邊形的最小面積,所以的最小值為,而,即的最小值,此時最小為圓心到直線的距離,此時,因為,所以,所以的概率為.【點睛】本題考查直線與圓的位置關系,及與長度有關的幾何概型,考查了學生分析問題的能力,難度一般.16、1【解析】

寫出莖葉圖對應的所有的數(shù),去掉最高分,最低分,再求平均分.【詳解】解:所有的數(shù)為:77,78,82,84,84,86,88,93,94,共9個數(shù),去掉最高分,最低分,剩下78,82,84,84,86,88,93,共7個數(shù),平均分為,故答案為1.【點睛】本題考查莖葉圖及平均數(shù)的計算,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)由題意可知:由,求得點坐標,即可求得橢圓的方程;(Ⅱ)設直線,代入橢圓方程,由韋達定理,由,由為銳角,則,由向量數(shù)量積的坐標公式,即可求得直線斜率的取值范圍.【詳解】解:(Ⅰ)根據(jù)題意是等腰直角三角形,,設由得則代入橢圓方程得橢圓的方程為(Ⅱ)根據(jù)題意,直線的斜率存在,可設方程為設由得由直線與橢圓有兩個不同的交點則即得又為銳角則即②由①②得或故直線斜率可取值范圍是【點睛】本題考查橢圓的標準方程及簡單幾何性質(zhì),考查直線與橢圓的位置關系,考查向量數(shù)量積的坐標運算,韋達定理,考查計算能力,屬于中檔題.18、(1)(2)存在;實數(shù)的取值范圍是【解析】

(1)根據(jù)橢圓定義計算,再根據(jù),,的關系計算即可得出橢圓方程;(2)設直線方程為,與橢圓方程聯(lián)立方程組,求出的范圍,根據(jù)根與系數(shù)的關系求出的中點坐標,求出的中垂線與軸的交點橫,得出關于的函數(shù),利用基本不等式得出的范圍.【詳解】(1)由題意可知,,.又,,,橢圓的方程為:.(2)若存在點,使得以,為鄰邊的平行四邊形是菱形,則為線段的中垂線與軸的交點.設直線的方程為:,,,,,聯(lián)立方程組,消元得:,△,又,故.由根與系數(shù)的關系可得,設的中點為,,則,,線段的中垂線方程為:,令可得,即.,故,當且僅當即時取等號,,且.的取值范圍是,.【點睛】本題主要考查了橢圓的性質(zhì),考查直線與橢圓的位置關系,意在考查學生對這些知識的理解掌握水平和分析推理能力.19、(1)無關;(2),.【解析】

(1)由頻率分布直方圖可知,在抽取的100人中,“體育迷”有25人,從而可得列聯(lián)表如下:非體育迷體育迷合計男301545女451055合計7525100將22列聯(lián)表中的數(shù)據(jù)代入公式計算,得.因為3.030<3.841,所以我們沒有充分理由認為“體育迷”與性別有關.(2)由頻率分布直方圖知抽到“體育迷”的頻率為0.25,將頻率視為概率,即從觀眾中抽取一名“體育迷”的概率.由題意知X~B(3,),從而X的分布列為X0123PE(X)=np==.D(X)=np(1-p)=20、(1),(2)【解析】

(1)利用互化公式把曲線C化成直角坐標方程,把點P的極坐標化成直角坐標;(2)把直線l的參數(shù)方程的標準形式代入曲線C的直角坐標方程,根據(jù)韋達定理以及參數(shù)t的幾何意義可得.【詳解】(1)由ρ2得ρ2+ρ2sin2θ=2,將ρ2=x2+y2,y=ρsinθ代入上式并整理得曲線C的直角坐標方程為y2=1,設點P的直角坐標為(x,y),因為P的極坐標

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論