版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年高三上數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知關(guān)于的方程在區(qū)間上有兩個根,,且,則實數(shù)的取值范圍是()A. B. C. D.2.已知函數(shù)的值域為,函數(shù),則的圖象的對稱中心為()A. B.C. D.3.已知,則“m⊥n”是“m⊥l”的A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件4.設(shè),是方程的兩個不等實數(shù)根,記().下列兩個命題()①數(shù)列的任意一項都是正整數(shù);②數(shù)列存在某一項是5的倍數(shù).A.①正確,②錯誤 B.①錯誤,②正確C.①②都正確 D.①②都錯誤5.數(shù)學中的數(shù)形結(jié)合,也可以組成世間萬物的絢麗畫面.一些優(yōu)美的曲線是數(shù)學形象美、對稱美、和諧美的結(jié)合產(chǎn)物,曲線恰好是四葉玫瑰線.給出下列結(jié)論:①曲線C經(jīng)過5個整點(即橫、縱坐標均為整數(shù)的點);②曲線C上任意一點到坐標原點O的距離都不超過2;③曲線C圍成區(qū)域的面積大于;④方程表示的曲線C在第二象限和第四象限其中正確結(jié)論的序號是()A.①③ B.②④ C.①②③ D.②③④6.復數(shù)滿足,則()A. B. C. D.7.在中,是的中點,,點在上且滿足,則等于()A. B. C. D.8.已知冪函數(shù)的圖象過點,且,,,則,,的大小關(guān)系為()A. B. C. D.9.在平面直角坐標系中,經(jīng)過點,漸近線方程為的雙曲線的標準方程為()A. B. C. D.10.已知橢圓的左、右焦點分別為、,過的直線交橢圓于A,B兩點,交y軸于點M,若、M是線段AB的三等分點,則橢圓的離心率為()A. B. C. D.11.已知雙曲線的一條漸近線方程是,則雙曲線的離心率為()A. B. C. D.12.函數(shù)的圖象大致為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在直角三角形中,為直角,,點在線段上,且,若,則的正切值為_____.14.數(shù)列滿足遞推公式,且,則___________.15.若函數(shù)為偶函數(shù),則.16.如圖,在三棱錐中,平面,,已知,,則當最大時,三棱錐的體積為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知,且的解集為.(1)求實數(shù),的值;(2)若的圖像與直線及圍成的四邊形的面積不小于14,求實數(shù)取值范圍.18.(12分)設(shè)函數(shù),是函數(shù)的導數(shù).(1)若,證明在區(qū)間上沒有零點;(2)在上恒成立,求的取值范圍.19.(12分)已知各項均為正數(shù)的數(shù)列的前項和為,且是與的等差中項.(1)證明:為等差數(shù)列,并求;(2)設(shè),數(shù)列的前項和為,求滿足的最小正整數(shù)的值.20.(12分)已知各項均為正數(shù)的數(shù)列的前項和為,且,(,且)(1)求數(shù)列的通項公式;(2)證明:當時,21.(12分)若數(shù)列滿足:對于任意,均為數(shù)列中的項,則稱數(shù)列為“數(shù)列”.(1)若數(shù)列的前項和,,試判斷數(shù)列是否為“數(shù)列”?說明理由;(2)若公差為的等差數(shù)列為“數(shù)列”,求的取值范圍;(3)若數(shù)列為“數(shù)列”,,且對于任意,均有,求數(shù)列的通項公式.22.(10分)手工藝是一種生活態(tài)度和對傳統(tǒng)的堅持,在我國有很多手工藝品制作村落,村民的手工技藝世代相傳,有些村落制造出的手工藝品不僅全國聞名,還大量遠銷海外.近年來某手工藝品村制作的手工藝品在國外備受歡迎,該村村民成立了手工藝品外銷合作社,為嚴把質(zhì)量關(guān),合作社對村民制作的每件手工藝品都請3位行家進行質(zhì)量把關(guān),質(zhì)量把關(guān)程序如下:(i)若一件手工藝品3位行家都認為質(zhì)量過關(guān),則該手工藝品質(zhì)量為A級;(ii)若僅有1位行家認為質(zhì)量不過關(guān),再由另外2位行家進行第二次質(zhì)量把關(guān),若第二次質(zhì)量把關(guān)這2位行家都認為質(zhì)量過關(guān),則該手工藝品質(zhì)量為B級,若第二次質(zhì)量把關(guān)這2位行家中有1位或2位認為質(zhì)量不過關(guān),則該手工藝品質(zhì)量為C級;(iii)若有2位或3位行家認為質(zhì)量不過關(guān),則該手工藝品質(zhì)量為D級.已知每一次質(zhì)量把關(guān)中一件手工藝品被1位行家認為質(zhì)量不過關(guān)的概率為,且各手工藝品質(zhì)量是否過關(guān)相互獨立.(1)求一件手工藝品質(zhì)量為B級的概率;(2)若一件手工藝品質(zhì)量為A,B,C級均可外銷,且利潤分別為900元,600元,300元,質(zhì)量為D級不能外銷,利潤記為100元.①求10件手工藝品中不能外銷的手工藝品最有可能是多少件;②記1件手工藝品的利潤為X元,求X的分布列與期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
先利用三角恒等變換將題中的方程化簡,構(gòu)造新的函數(shù),將方程的解的問題轉(zhuǎn)化為函數(shù)圖象的交點問題,畫出函數(shù)圖象,再結(jié)合,解得的取值范圍.【詳解】由題化簡得,,作出的圖象,又由易知.故選:C.【點睛】本題考查了三角恒等變換,方程的根的問題,利用數(shù)形結(jié)合法,求得范圍.屬于中檔題.2、B【解析】
由值域為確定的值,得,利用對稱中心列方程求解即可【詳解】因為,又依題意知的值域為,所以得,,所以,令,得,則的圖象的對稱中心為.故選:B【點睛】本題考查三角函數(shù)的圖像及性質(zhì),考查函數(shù)的對稱中心,重點考查值域的求解,易錯點是對稱中心縱坐標錯寫為03、B【解析】
構(gòu)造長方體ABCD﹣A1B1C1D1,令平面α為面ADD1A1,底面ABCD為β,然后再在這兩個面中根據(jù)題意恰當?shù)倪x取直線為m,n即可進行判斷.【詳解】如圖,取長方體ABCD﹣A1B1C1D1,令平面α為面ADD1A1,底面ABCD為β,直線=直線。若令AD1=m,AB=n,則m⊥n,但m不垂直于若m⊥,由平面平面可知,直線m垂直于平面β,所以m垂直于平面β內(nèi)的任意一條直線∴m⊥n是m⊥的必要不充分條件.故選:B.【點睛】本題考點有兩個:①考查了充分必要條件的判斷,在確定好大前提的條件下,從m⊥n?m⊥?和m⊥?m⊥n?兩方面進行判斷;②是空間的垂直關(guān)系,一般利用長方體為載體進行分析.4、A【解析】
利用韋達定理可得,,結(jié)合可推出,再計算出,,從而推出①正確;再利用遞推公式依次計算數(shù)列中的各項,以此判斷②的正誤.【詳解】因為,是方程的兩個不等實數(shù)根,所以,,因為,所以,即當時,數(shù)列中的任一項都等于其前兩項之和,又,,所以,,,以此類推,即可知數(shù)列的任意一項都是正整數(shù),故①正確;若數(shù)列存在某一項是5的倍數(shù),則此項個位數(shù)字應當為0或5,由,,依次計算可知,數(shù)列中各項的個位數(shù)字以1,3,4,7,1,8,9,7,6,3,9,2為周期,故數(shù)列中不存在個位數(shù)字為0或5的項,故②錯誤;故選:A.【點睛】本題主要考查數(shù)列遞推公式的推導,考查數(shù)列性質(zhì)的應用,考查學生的綜合分析以及計算能力.5、B【解析】
利用基本不等式得,可判斷②;和聯(lián)立解得可判斷①③;由圖可判斷④.【詳解】,解得(當且僅當時取等號),則②正確;將和聯(lián)立,解得,即圓與曲線C相切于點,,,,則①和③都錯誤;由,得④正確.故選:B.【點睛】本題考查曲線與方程的應用,根據(jù)方程,判斷曲線的性質(zhì)及結(jié)論,考查學生邏輯推理能力,是一道有一定難度的題.6、C【解析】
利用復數(shù)模與除法運算即可得到結(jié)果.【詳解】解:,故選:C【點睛】本題考查復數(shù)除法運算,考查復數(shù)的模,考查計算能力,屬于基礎(chǔ)題.7、B【解析】
由M是BC的中點,知AM是BC邊上的中線,又由點P在AM上且滿足可得:P是三角形ABC的重心,根據(jù)重心的性質(zhì),即可求解.【詳解】解:∵M是BC的中點,知AM是BC邊上的中線,又由點P在AM上且滿足∴P是三角形ABC的重心∴又∵AM=1∴∴故選B.【點睛】判斷P點是否是三角形的重心有如下幾種辦法:①定義:三條中線的交點.②性質(zhì):或取得最小值③坐標法:P點坐標是三個頂點坐標的平均數(shù).8、A【解析】
根據(jù)題意求得參數(shù),根據(jù)對數(shù)的運算性質(zhì),以及對數(shù)函數(shù)的單調(diào)性即可判斷.【詳解】依題意,得,故,故,,,則.故選:A.【點睛】本題考查利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性比較大小,考查推理論證能力,屬基礎(chǔ)題.9、B【解析】
根據(jù)所求雙曲線的漸近線方程為,可設(shè)所求雙曲線的標準方程為k.再把點代入,求得k的值,可得要求的雙曲線的方程.【詳解】∵雙曲線的漸近線方程為設(shè)所求雙曲線的標準方程為k.又在雙曲線上,則k=16-2=14,即雙曲線的方程為∴雙曲線的標準方程為故選:B【點睛】本題主要考查用待定系數(shù)法求雙曲線的方程,雙曲線的定義和標準方程,以及雙曲線的簡單性質(zhì)的應用,屬于基礎(chǔ)題.10、D【解析】
根據(jù)題意,求得的坐標,根據(jù)點在橢圓上,點的坐標滿足橢圓方程,即可求得結(jié)果.【詳解】由已知可知,點為中點,為中點,故可得,故可得;代入橢圓方程可得,解得,不妨取,故可得點的坐標為,則,易知點坐標,將點坐標代入橢圓方程得,所以離心率為,故選:D.【點睛】本題考查橢圓離心率的求解,難點在于根據(jù)題意求得點的坐標,屬中檔題.11、D【解析】雙曲線的漸近線方程是,所以,即,,即,,故選D.12、A【解析】
根據(jù)函數(shù)的奇偶性和單調(diào)性,排除錯誤選項,從而得出正確選項.【詳解】因為,所以是偶函數(shù),排除C和D.當時,,,令,得,即在上遞減;令,得,即在上遞增.所以在處取得極小值,排除B.故選:A【點睛】本小題主要考查函數(shù)圖像的識別,考查利用導數(shù)研究函數(shù)的單調(diào)區(qū)間和極值,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】
在直角三角形中設(shè),,,利用兩角差的正切公式求解.【詳解】設(shè),,則,故.故答案為:3【點睛】此題考查在直角三角形中求角的正切值,關(guān)鍵在于合理構(gòu)造角的和差關(guān)系,其本質(zhì)是利用兩角差的正切公式求解.14、2020【解析】
可對左右兩端同乘以得,依次寫出,,,,累加可得,再由得,代入即可求解【詳解】左右兩端同乘以有,從而,,,,將以上式子累加得.由得.令,有.故答案為:2020【點睛】本題考查數(shù)列遞推式和累加法的應用,屬于基礎(chǔ)題15、1【解析】試題分析:由函數(shù)為偶函數(shù)函數(shù)為奇函數(shù),.考點:函數(shù)的奇偶性.【方法點晴】本題考查導函數(shù)的奇偶性以及邏輯思維能力、等價轉(zhuǎn)化能力、運算求解能力、特殊與一般思想、數(shù)形結(jié)合思想與轉(zhuǎn)化思想,具有一定的綜合性和靈活性,屬于較難題型.首先利用轉(zhuǎn)化思想,將函數(shù)為偶函數(shù)轉(zhuǎn)化為函數(shù)為奇函數(shù),然后再利用特殊與一般思想,?。?6、4【解析】設(shè),則,,,,當且僅當,即時,等號成立.,故答案為4三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),;(2)【解析】
(1)解絕對值不等式得,根據(jù)不等式的解集為列出方程組,解出即可;(2)求出的圖像與直線及交點的坐標,通過分割法將四邊形的面積分為兩個三角形,列出不等式,解不等式即可.【詳解】(1)由得:,,即,解得,.(2)的圖像與直線及圍成的四邊形,,,,.過點向引垂線,垂足為,則.化簡得:,(舍)或.故的取值范圍為.【點睛】本題主要考查了絕對值不等式的求法,以及絕對值不等式在幾何中的應用,屬于中檔題.18、(1)證明見解析(2)【解析】
(1)先利用導數(shù)的四則運算法則和導數(shù)公式求出,再由函數(shù)的導數(shù)可知,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,而,,可知在區(qū)間上恒成立,即在區(qū)間上沒有零點;(2)由題意可將轉(zhuǎn)化為,構(gòu)造函數(shù),利用導數(shù)討論研究其在上的單調(diào)性,由,即可求出的取值范圍.【詳解】(1)若,則,,設(shè),則,,,故函數(shù)是奇函數(shù).當時,,,這時,又函數(shù)是奇函數(shù),所以當時,.綜上,當時,函數(shù)單調(diào)遞增;當時,函數(shù)單調(diào)遞減.又,,故在區(qū)間上恒成立,所以在區(qū)間上沒有零點.(2),由,所以恒成立,若,則,設(shè),.故當時,,又,所以當時,,滿足題意;當時,有,與條件矛盾,舍去;當時,令,則,又,故在區(qū)間上有無窮多個零點,設(shè)最小的零點為,則當時,,因此在上單調(diào)遞增.,所以.于是,當時,,得,與條件矛盾.故的取值范圍是.【點睛】本題主要考查導數(shù)的四則運算法則和導數(shù)公式的應用,以及利用導數(shù)研究函數(shù)的單調(diào)性和最值,涉及分類討論思想和放縮法的應用,難度較大,意在考查學生的數(shù)學建模能力,數(shù)學運算能力和邏輯推理能力,屬于較難題.19、(1)見解析,(2)最小正整數(shù)的值為35.【解析】
(1)由等差中項可知,當時,得,整理后可得,從而證明為等差數(shù)列,繼而可求.(2),則可求出,令,即可求出的取值范圍,進而求出最小值.【詳解】解析:(1)由題意可得,當時,,∴,,當時,,整理可得,∴是首項為1,公差為1的等差數(shù)列,∴,.(2)由(1)可得,∴,解得,∴最小正整數(shù)的值為35.【點睛】本題考查了等差中項,考查了等差數(shù)列的定義,考查了與的關(guān)系,考查了裂項相消求和.當已知有與的遞推關(guān)系時,常代入進行整理.證明數(shù)列是等差數(shù)列時,一般借助數(shù)列,即后一項與前一項的差為常數(shù).20、(1)(2)見證明【解析】
(1)由題意將遞推關(guān)系式整理為關(guān)于與的關(guān)系式,求得前n項和然后確定通項公式即可;(2)由題意結(jié)合通項公式的特征放縮之后裂項求和即可證得題中的不等式.【詳解】(1)由,得,即,所以數(shù)列是以為首項,以為公差的等差數(shù)列,所以,即,當時,,當時,,也滿足上式,所以;(2)當時,,所以【點睛】給出與的遞推關(guān)系,求an,常用思路是:一是利用轉(zhuǎn)化為an的遞推關(guān)系,再求其通項公式;二是轉(zhuǎn)化為Sn的遞推關(guān)系,先求出Sn與n之間的關(guān)系,再求an.21、(1)不是,見解析(2)(3)【解析】
(1)利用遞推關(guān)系求出數(shù)列的通項公式,進一步驗證時,是否為數(shù)列中的項,即可得答案;(2)由題意得,再對公差進行分類討論,即可得答案;(3)由題意得數(shù)列為等差數(shù)列,設(shè)數(shù)列的公差為,再根據(jù)不等式得到公差的值,即可得答案;【詳解】(1)當時,又,所以.所以當時,,而,所以時,不是數(shù)列中的項,故數(shù)列不是為“數(shù)列”(2)因為數(shù)列是公差為的等差數(shù)列,所以.因為數(shù)列為“數(shù)列”所以任意,存在,使得,即有.①若,則只需,使得,從而得是數(shù)列中的項.②若,則.此時,當時,不為正整數(shù),所以不符合題意.綜上,.(3)由題意,所以,又因為,且數(shù)列為“數(shù)列”,所以,即,所以數(shù)列為等差數(shù)列.設(shè)數(shù)列的公差為,則
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度物業(yè)管理服務成本分析與優(yōu)化建議合同3篇
- 2025年度立體綠化圍墻安裝與生態(tài)景觀設(shè)計合同2篇
- 第6課 拉拉手交朋友(第2課時)說課稿-2024-2025學年道德與法治一年級上冊統(tǒng)編版
- 全國人教版初中信息技術(shù)七年級上冊第四單元第12課一、《網(wǎng)站開發(fā)的基本過程》說課稿
- 人教版初中歷史與社會七年級上冊 2.1 大洲和大洋 說課稿
- 2025年度鋼結(jié)構(gòu)施工員勞務合同范本(升級版)3篇
- 2025年度耐候沙土銷售合同模板2篇
- 黑龍江伊春市(2024年-2025年小學六年級語文)部編版綜合練習(下學期)試卷及答案
- 《長方形和正方形-周長》說課稿-2024-2025學年三年級上冊數(shù)學人教版
- 2025年粵教版一年級英語下冊階段測試試卷
- 三軸攪拌樁安全技術(shù)交底(好)
- Unit-1-The-Dinner-Party市公開課一等獎省賽課微課金獎課件
- 2024年輔警考試公基常識300題(附解析)
- 加油站反恐演練工作方案及流程
- 【閱讀提升】部編版語文五年級下冊第五單元閱讀要素解析 類文閱讀課外閱讀過關(guān)(含答案)
- 挖掘機運輸方案
- 民企廉潔培訓課件
- 飛書使用培訓課件
- 食品生產(chǎn)許可證辦理流程詳解
- 2023年1月自考07484社會保障學試題及答案含解析
- 餐飲咨詢服務合同范本
評論
0/150
提交評論