版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的一個焦點與拋物線的焦點重合,則雙曲線的離心率為()A. B. C.3 D.42.已知復(fù)數(shù)z=(1+2i)(1+ai)(a∈R),若z∈R,則實數(shù)a=()A. B. C.2 D.﹣23.已知三棱錐的體積為2,是邊長為2的等邊三角形,且三棱錐的外接球的球心恰好是中點,則球的表面積為()A. B. C. D.4.已知,,,若,則()A. B. C. D.5.設(shè)函數(shù)的導(dǎo)函數(shù),且滿足,若在中,,則()A. B. C. D.6.趙爽是我國古代數(shù)學(xué)家、天文學(xué)家,大約在公元222年,趙爽為《周髀算經(jīng)》一書作序時,介紹了“勾股圓方圖”,亦稱“趙爽弦圖”(以弦為邊長得到的正方形是由4個全等的直角三角形再加上中間的一個小正方形組成的).類比“趙爽弦圖”.可類似地構(gòu)造如下圖所示的圖形,它是由3個全等的三角形與中間的一個小等邊三角形拼成一個大等邊三角形.設(shè),若在大等邊三角形中隨機取一點,則此點取自小等邊三角形(陰影部分)的概率是()A. B. C. D.7.如圖,點E是正方體ABCD-A1B1C1D1的棱DD1的中點,點F,M分別在線段AC,BD1(不包含端點)上運動,則()A.在點F的運動過程中,存在EF//BC1B.在點M的運動過程中,不存在B1M⊥AEC.四面體EMAC的體積為定值D.四面體FA1C1B的體積不為定值8.已知集合,,若,則()A.或 B.或 C.或 D.或9.將函數(shù)圖象上每一點的橫坐標(biāo)變?yōu)樵瓉淼?倍,再將圖像向左平移個單位長度,得到函數(shù)的圖象,則函數(shù)圖象的一個對稱中心為()A. B. C. D.10.已知將函數(shù)(,)的圖象向右平移個單位長度后得到函數(shù)的圖象,若和的圖象都關(guān)于對稱,則下述四個結(jié)論:①②③④點為函數(shù)的一個對稱中心其中所有正確結(jié)論的編號是()A.①②③ B.①③④ C.①②④ D.②③④11.執(zhí)行下面的程序框圖,則輸出的值為()A. B. C. D.12.設(shè),,,則的大小關(guān)系是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.定義在R上的函數(shù)滿足:①對任意的,都有;②當(dāng)時,,則函數(shù)的解析式可以是______________.14.在平面直角坐標(biāo)系中,點P在直線上,過點P作圓C:的一條切線,切點為T.若,則的長是______.15.若,且,則的最小值是______.16.已知橢圓的左焦點為,點在橢圓上且在軸的上方,若線段的中點在以原點為圓心,為半徑的圓上,則直線的斜率是_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某早餐店對一款新口味的酸奶進(jìn)行了一段時間試銷,定價為元/瓶.酸奶在試銷售期間足量供應(yīng),每天的銷售數(shù)據(jù)按照,,,分組,得到如下頻率分布直方圖,以不同銷量的頻率估計概率.從試銷售期間任選三天,求其中至少有一天的酸奶銷量大于瓶的概率;試銷結(jié)束后,這款酸奶正式上市,廠家只提供整箱批發(fā):大箱每箱瓶,批發(fā)成本元;小箱每箱瓶,批發(fā)成本元.由于酸奶保質(zhì)期短,當(dāng)天未賣出的只能作廢.該早餐店以試銷售期間的銷量作為參考,決定每天僅批發(fā)一箱(計算時每個分組取中間值作為代表,比如銷量為時看作銷量為瓶).①設(shè)早餐店批發(fā)一大箱時,當(dāng)天這款酸奶的利潤為隨機變量,批發(fā)一小箱時,當(dāng)天這款酸奶的利潤為隨機變量,求和的分布列和數(shù)學(xué)期望;②以利潤作為決策依據(jù),該早餐店應(yīng)每天批發(fā)一大箱還是一小箱?注:銷售額=銷量×定價;利潤=銷售額-批發(fā)成本.18.(12分)的內(nèi)角、、所對的邊長分別為、、,已知.(1)求的值;(2)若,點是線段的中點,,求的面積.19.(12分)選修4-5:不等式選講設(shè)函數(shù).(1)當(dāng)時,求不等式的解集;(2)若在上恒成立,求實數(shù)的取值范圍.20.(12分)已知.(1)求不等式的解集;(2)記的最小值為,且正實數(shù)滿足.證明:.21.(12分)已知函數(shù).(Ⅰ)當(dāng)時,求不等式的解集;(Ⅱ)若存在滿足不等式,求實數(shù)的取值范圍.22.(10分)如圖,在四棱錐中,底面是矩形,是的中點,平面,且,.()求與平面所成角的正弦.()求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
根據(jù)題意,由拋物線的方程可得其焦點坐標(biāo),由此可得雙曲線的焦點坐標(biāo),由雙曲線的幾何性質(zhì)可得,解可得,由離心率公式計算可得答案.【詳解】根據(jù)題意,拋物線的焦點為,則雙曲線的焦點也為,即,則有,解可得,雙曲線的離心率.故選:A.【點睛】本題主要考查雙曲線、拋物線的標(biāo)準(zhǔn)方程,關(guān)鍵是求出拋物線焦點的坐標(biāo),意在考查學(xué)生對這些知識的理解掌握水平.2、D【解析】
化簡z=(1+2i)(1+ai)=,再根據(jù)z∈R求解.【詳解】因為z=(1+2i)(1+ai)=,又因為z∈R,所以,解得a=-2.故選:D【點睛】本題主要考查復(fù)數(shù)的運算及概念,還考查了運算求解的能力,屬于基礎(chǔ)題.3、A【解析】
根據(jù)是中點這一條件,將棱錐的高轉(zhuǎn)化為球心到平面的距離,即可用勾股定理求解.【詳解】解:設(shè)點到平面的距離為,因為是中點,所以到平面的距離為,三棱錐的體積,解得,作平面,垂足為的外心,所以,且,所以在中,,此為球的半徑,.故選:A.【點睛】本題考查球的表面積,考查點到平面的距離,屬于中檔題.4、B【解析】
由平行求出參數(shù),再由數(shù)量積的坐標(biāo)運算計算.【詳解】由,得,則,,,所以.故選:B.【點睛】本題考查向量平行的坐標(biāo)表示,考查數(shù)量積的坐標(biāo)運算,掌握向量數(shù)量積的坐標(biāo)運算是解題關(guān)鍵.5、D【解析】
根據(jù)的結(jié)構(gòu)形式,設(shè),求導(dǎo),則,在上是增函數(shù),再根據(jù)在中,,得到,,利用余弦函數(shù)的單調(diào)性,得到,再利用的單調(diào)性求解.【詳解】設(shè),所以,因為當(dāng)時,,即,所以,在上是增函數(shù),在中,因為,所以,,因為,且,所以,即,所以,即故選:D【點睛】本題主要考查導(dǎo)數(shù)與函數(shù)的單調(diào)性,還考查了運算求解的能力,屬于中檔題.6、A【解析】
根據(jù)幾何概率計算公式,求出中間小三角形區(qū)域的面積與大三角形面積的比值即可.【詳解】在中,,,,由余弦定理,得,所以.所以所求概率為.故選A.【點睛】本題考查了幾何概型的概率計算問題,是基礎(chǔ)題.7、C【解析】
采用逐一驗證法,根據(jù)線線、線面之間的關(guān)系以及四面體的體積公式,可得結(jié)果.【詳解】A錯誤由平面,//而與平面相交,故可知與平面相交,所以不存在EF//BC1B錯誤,如圖,作由又平面,所以平面又平面,所以由//,所以,平面所以平面,又平面所以,所以存在C正確四面體EMAC的體積為其中為點到平面的距離,由//,平面,平面所以//平面,則點到平面的距離即點到平面的距離,所以為定值,故四面體EMAC的體積為定值錯誤由//,平面,平面所以//平面,則點到平面的距離即為點到平面的距離,所以為定值所以四面體FA1C1B的體積為定值故選:C【點睛】本題考查線面、線線之間的關(guān)系,考驗分析能力以及邏輯推理能力,熟練線面垂直與平行的判定定理以及性質(zhì)定理,中檔題.8、B【解析】
因為,所以,所以或.若,則,滿足.若,解得或.若,則,滿足.若,顯然不成立,綜上或,選B.9、D【解析】
根據(jù)函數(shù)圖象的變換規(guī)律可得到解析式,然后將四個選項代入逐一判斷即可.【詳解】解:圖象上每一點的橫坐標(biāo)變?yōu)樵瓉淼?倍,得到再將圖像向左平移個單位長度,得到函數(shù)的圖象,故選:D【點睛】考查三角函數(shù)圖象的變換規(guī)律以及其有關(guān)性質(zhì),基礎(chǔ)題.10、B【解析】
首先根據(jù)三角函數(shù)的平移規(guī)則表示出,再根據(jù)對稱性求出、,即可求出的解析式,從而驗證可得;【詳解】解:由題意可得,又∵和的圖象都關(guān)于對稱,∴,∴解得,即,又∵,∴,,∴,∴,,∴①③④正確,②錯誤.故選:B【點睛】本題考查三角函數(shù)的性質(zhì)的應(yīng)用,三角函數(shù)的變換規(guī)則,屬于基礎(chǔ)題.11、D【解析】
根據(jù)框圖,模擬程序運行,即可求出答案.【詳解】運行程序,,
,,,,,結(jié)束循環(huán),故輸出,故選:D.【點睛】本題主要考查了程序框圖,循環(huán)結(jié)構(gòu),條件分支結(jié)構(gòu),屬于中檔題.12、A【解析】
選取中間值和,利用對數(shù)函數(shù),和指數(shù)函數(shù)的單調(diào)性即可求解.【詳解】因為對數(shù)函數(shù)在上單調(diào)遞增,所以,因為對數(shù)函數(shù)在上單調(diào)遞減,所以,因為指數(shù)函數(shù)在上單調(diào)遞增,所以,綜上可知,.故選:A【點睛】本題考查利用對數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性比較大小;考查邏輯思維能力和知識的綜合運用能力;選取合適的中間值是求解本題的關(guān)鍵;屬于中檔題、??碱}型.二、填空題:本題共4小題,每小題5分,共20分。13、(或,答案不唯一)【解析】
由可得是奇函數(shù),再由時,可得到滿足條件的奇函數(shù)非常多,屬于開放性試題.【詳解】在中,令,得;令,則,故是奇函數(shù),由時,,知或等,答案不唯一.故答案為:(或,答案不唯一).【點睛】本題考查抽象函數(shù)的性質(zhì),涉及到由表達(dá)式確定函數(shù)奇偶性,是一道開放性的題,難度不大.14、【解析】
作出圖像,設(shè)點,根據(jù)已知可得,,且,可解出,計算即得.【詳解】如圖,設(shè),圓心坐標(biāo)為,可得,,,,,解得,,即的長是.故答案為:【點睛】本題考查直線與圓的位置關(guān)系,以及求平面兩點間的距離,運用了數(shù)形結(jié)合的思想.15、8【解析】
利用的代換,將寫成,然后根據(jù)基本不等式求解最小值.【詳解】因為(即取等號),所以最小值為.【點睛】已知,求解()的最小值的處理方法:利用,得到,展開后利用基本不等式求解,注意取等號的條件.16、【解析】
結(jié)合圖形可以發(fā)現(xiàn),利用三角形中位線定理,將線段長度用坐標(biāo)表示成圓的方程,與橢圓方程聯(lián)立可進(jìn)一步求解.利用焦半徑及三角形中位線定理,則更為簡潔.【詳解】方法1:由題意可知,由中位線定理可得,設(shè)可得,聯(lián)立方程可解得(舍),點在橢圓上且在軸的上方,求得,所以方法2:焦半徑公式應(yīng)用解析1:由題意可知,由中位線定理可得,即求得,所以.【點睛】本題主要考查橢圓的標(biāo)準(zhǔn)方程、橢圓的幾何性質(zhì)、直線與圓的位置關(guān)系,利用數(shù)形結(jié)合思想,是解答解析幾何問題的重要途徑.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、;①詳見解析;②應(yīng)該批發(fā)一大箱.【解析】
酸奶每天銷量大于瓶的概率為,不大于瓶的概率為,設(shè)“試銷售期間任選三天,其中至少有一天的酸奶銷量大于瓶”為事件,則表示“這三天酸奶的銷量都不大于瓶”.利用對立事件概率公式求解即可.①若早餐店批發(fā)一大箱,批發(fā)成本為元,依題意,銷量有,,,四種情況,分別求出相應(yīng)概率,列出分布列,求出的數(shù)學(xué)期望,若早餐店批發(fā)一小箱,批發(fā)成本為元,依題意,銷量有,兩種情況,分別求出相應(yīng)概率,由此求出的分布列和數(shù)學(xué)期望;②根據(jù)①中的計算結(jié)果,,從而早餐應(yīng)該批發(fā)一大箱.【詳解】解:根據(jù)圖中數(shù)據(jù),酸奶每天銷量大于瓶的概率為,不大于瓶的概率為.設(shè)“試銷售期間任選三天,其中至少有一天的酸奶銷量大于瓶”為事件,則表示“這三天酸奶的銷量都不大于瓶”.所以.①若早餐店批發(fā)一大箱,批發(fā)成本為元,依題意,銷量有,,,四種情況.當(dāng)銷量為瓶時,利潤為元;當(dāng)銷量為瓶時,利潤為元;當(dāng)銷量為瓶時,利潤為元;當(dāng)銷量為瓶時,利潤為元.隨機變量的分布列為所以(元)若早餐店批發(fā)一小箱,批發(fā)成本為元,依題意,銷量有,兩種情況.當(dāng)銷量為瓶時,利潤為元;當(dāng)銷量為瓶時,利潤為元.隨機變量的分布列為所以(元).②根據(jù)①中的計算結(jié)果,,所以早餐店應(yīng)該批發(fā)一大箱.【點睛】本題考查概率,離散型隨機變量的分布列、數(shù)學(xué)期望的求法,考查古典概型、對立事件概率計算公式等基礎(chǔ)知識,屬于中檔題.18、(1)(2)【解析】
(1)利用正弦定理的邊化角公式,結(jié)合兩角和的正弦公式,即可得出的值;(2)由題意得出,兩邊平方,化簡得出,根據(jù)三角形面積公式,即可得出結(jié)論.【詳解】(1)由正弦定理得即即在中,,所以(2)因為點是線段的中點,所以兩邊平方得由得整理得,解得或(舍)所以的面積【點睛】本題主要考查了正弦定理的邊化角公式,三角形的面積公式,屬于中檔題.19、(1);(2)【解析】
(1)當(dāng)時,將原不等式化簡后兩邊平方,由此解出不等式的解集.(2)對分成三種情況,利用零點分段法去絕對值,將表示為分段函數(shù)的形式,根據(jù)單調(diào)性求得的取值范圍.【詳解】(1)時,可得,即,化簡得:,所以不等式的解集為.(2)①當(dāng)時,由函數(shù)單調(diào)性可得,解得;②當(dāng)時,,所以符合題意;③當(dāng)時,由函數(shù)單調(diào)性可得,,解得綜上,實數(shù)的取值范圍為【點睛】本小題主要考查含有絕對值不等式的解法,考查不等式恒成立問題的求解,屬于中檔題.20、(1)或;(2)見解析【解析】
(1)根據(jù),利用零點分段法解不等式,或作出函數(shù)的圖像,利用函數(shù)的圖像解不等式;(2)由(1)作出的函數(shù)圖像求出的最小值為,可知,代入中,然后給等式兩邊同乘以,再將寫成后,化簡變形,再用均值不等式可證明.【詳解】(1)解法一:1°時,,即,解得;2°時,,即,解得;3°時,,即,解得.綜上可得,不等式的解集為或.解法二:由作出圖象如下:由圖象可得不等式的解集為或.(2)由所以在上單調(diào)遞
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 智能型溫室大棚建設(shè)項目申請報告可行性研究報告
- 屋頂分布式光伏項目可行性研究報告
- 太陽能光伏壓延玻璃項目可行性研究報告
- 新疆省直轄行政單位(2024年-2025年小學(xué)六年級語文)部編版課后作業(yè)(下學(xué)期)試卷及答案
- 二零二五年度醫(yī)療專家兼職聘用合同3篇
- 二零二五年度房地產(chǎn)并購?fù)顿Y合同范本解析大全3篇
- 2025共團(tuán)永康市委下屬青少年綜合服務(wù)中心駐團(tuán)市委機關(guān)人員招聘2人(浙江)高頻重點提升(共500題)附帶答案詳解
- 2025年中國服裝制造行業(yè)市場深度研究及發(fā)展趨勢預(yù)測報告
- 2025年計算機二級WPS考試題目
- 智能 檢測與監(jiān)測 技術(shù)-智能建造技術(shù)專01課件講解
- 2024-2030年中國車載導(dǎo)航儀行業(yè)發(fā)展?fàn)顩r及投資前景規(guī)劃研究報告
- 雙高建設(shè)的路徑設(shè)計與實施方案
- 網(wǎng)絡(luò)版權(quán)合同范例
- 工貿(mào)企業(yè)安全生產(chǎn)費用提取和使用管理制度(4篇)
- 醫(yī)院純水系統(tǒng)施工方案
- 各類骨折病人體位護(hù)理
- GB/T 750-2024水泥壓蒸安定性試驗方法
評論
0/150
提交評論