2023屆青海省平安區(qū)第一高級中學(xué)數(shù)學(xué)高三上期末達標(biāo)測試試題含解析_第1頁
2023屆青海省平安區(qū)第一高級中學(xué)數(shù)學(xué)高三上期末達標(biāo)測試試題含解析_第2頁
2023屆青海省平安區(qū)第一高級中學(xué)數(shù)學(xué)高三上期末達標(biāo)測試試題含解析_第3頁
2023屆青海省平安區(qū)第一高級中學(xué)數(shù)學(xué)高三上期末達標(biāo)測試試題含解析_第4頁
2023屆青海省平安區(qū)第一高級中學(xué)數(shù)學(xué)高三上期末達標(biāo)測試試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.雙曲線的一條漸近線方程為,那么它的離心率為()A. B. C. D.2.某部隊在一次軍演中要先后執(zhí)行六項不同的任務(wù),要求是:任務(wù)A必須排在前三項執(zhí)行,且執(zhí)行任務(wù)A之后需立即執(zhí)行任務(wù)E,任務(wù)B、任務(wù)C不能相鄰,則不同的執(zhí)行方案共有()A.36種 B.44種 C.48種 D.54種3.如圖所示,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,其中左視圖中三角形為等腰直角三角形,則該幾何體外接球的體積是()A. B.C. D.4.已知為虛數(shù)單位,若復(fù)數(shù)滿足,則()A. B. C. D.5.我國著名數(shù)學(xué)家陳景潤在哥德巴赫猜想的研究中取得了世界矚目的成就,哥德巴赫猜想內(nèi)容是“每個大于的偶數(shù)可以表示為兩個素數(shù)的和”(注:如果一個大于的整數(shù)除了和自身外無其他正因數(shù),則稱這個整數(shù)為素數(shù)),在不超過的素數(shù)中,隨機選取個不同的素數(shù)、,則的概率是()A. B. C. D.6.已知雙曲線的焦距為,若的漸近線上存在點,使得經(jīng)過點所作的圓的兩條切線互相垂直,則雙曲線的離心率的取值范圍是()A. B. C. D.7.1777年,法國科學(xué)家蒲豐在宴請客人時,在地上鋪了一張白紙,上面畫著一條條等距離的平行線,而他給每個客人發(fā)許多等質(zhì)量的,長度等于相鄰兩平行線距離的一半的針,讓他們隨意投放.事后,蒲豐對針落地的位置進行統(tǒng)計,發(fā)現(xiàn)共投針2212枚,與直線相交的有704枚.根據(jù)這次統(tǒng)計數(shù)據(jù),若客人隨意向這張白紙上投放一根這樣的針,則針落地后與直線相交的概率約為()A. B. C. D.8.以下三個命題:①在勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每10分鐘從中抽取一件產(chǎn)品進行某項指標(biāo)檢測,這樣的抽樣是分層抽樣;②若兩個變量的線性相關(guān)性越強,則相關(guān)系數(shù)的絕對值越接近于1;③對分類變量與的隨機變量的觀測值來說,越小,判斷“與有關(guān)系”的把握越大;其中真命題的個數(shù)為()A.3 B.2 C.1 D.09.已知函數(shù)的圖像與一條平行于軸的直線有兩個交點,其橫坐標(biāo)分別為,則()A. B. C. D.10.已知命題p:“”是“”的充要條件;,,則()A.為真命題 B.為真命題C.為真命題 D.為假命題11.?dāng)?shù)列滿足:,,,為其前n項和,則()A.0 B.1 C.3 D.412.已知,且,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.?dāng)?shù)列的前項和為,數(shù)列的前項和為,滿足,,且.若任意,成立,則實數(shù)的取值范圍為__________.14.已知隨機變量服從正態(tài)分布,,則__________.15.直線是圓:與圓:的公切線,并且分別與軸正半軸,軸正半軸相交于,兩點,則的面積為_________16.已知數(shù)列是等比數(shù)列,,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)求不等式的解集;(2)若存在實數(shù),使得不等式成立,求實數(shù)的取值范圍.18.(12分)設(shè)函數(shù).(1)當(dāng)時,求不等式的解集;(2)若不等式恒成立,求實數(shù)a的取值范圍.19.(12分)已知橢圓的離心率為,且過點.(Ⅰ)求橢圓的方程;(Ⅱ)設(shè)是橢圓上且不在軸上的一個動點,為坐標(biāo)原點,過右焦點作的平行線交橢圓于、兩個不同的點,求的值.20.(12分)選修4-2:矩陣與變換(本小題滿分10分)已知矩陣A=(k≠0)的一個特征向量為α=,A的逆矩陣A-1對應(yīng)的變換將點(3,1)變?yōu)辄c(1,1).求實數(shù)a,k的值.21.(12分)已知函數(shù)f(x)=x(1)討論fx(2)當(dāng)x≥-1時,fx+a22.(10分)正項數(shù)列的前n項和Sn滿足:(1)求數(shù)列的通項公式;(2)令,數(shù)列{bn}的前n項和為Tn,證明:對于任意的n∈N*,都有Tn<.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

根據(jù)雙曲線的一條漸近線方程為,列出方程,求出的值即可.【詳解】∵雙曲線的一條漸近線方程為,可得,∴,∴雙曲線的離心率.故選:D.【點睛】本小題主要考查雙曲線離心率的求法,屬于基礎(chǔ)題.2、B【解析】

分三種情況,任務(wù)A排在第一位時,E排在第二位;任務(wù)A排在第二位時,E排在第三位;任務(wù)A排在第三位時,E排在第四位,結(jié)合任務(wù)B和C不能相鄰,分別求出三種情況的排列方法,即可得到答案.【詳解】六項不同的任務(wù)分別為A、B、C、D、E、F,如果任務(wù)A排在第一位時,E排在第二位,剩下四個位置,先排好D、F,再在D、F之間的3個空位中插入B、C,此時共有排列方法:;如果任務(wù)A排在第二位時,E排在第三位,則B,C可能分別在A、E的兩側(cè),排列方法有,可能都在A、E的右側(cè),排列方法有;如果任務(wù)A排在第三位時,E排在第四位,則B,C分別在A、E的兩側(cè);所以不同的執(zhí)行方案共有種.【點睛】本題考查了排列組合問題,考查了學(xué)生的邏輯推理能力,屬于中檔題.3、C【解析】

作出三視圖所表示幾何體的直觀圖,可得直觀圖為直三棱柱,并且底面為等腰直角三角形,即可求得外接球的半徑,即可得外接球的體積.【詳解】如圖為幾何體的直觀圖,上下底面為腰長為的等腰直角三角形,三棱柱的高為4,其外接球半徑為,所以體積為.故選:C【點睛】本題考查三視圖還原幾何體的直觀圖、球的體積公式,考查空間想象能力、運算求解能力,求解時注意球心的確定.4、A【解析】分析:題設(shè)中復(fù)數(shù)滿足的等式可以化為,利用復(fù)數(shù)的四則運算可以求出.詳解:由題設(shè)有,故,故選A.點睛:本題考查復(fù)數(shù)的四則運算和復(fù)數(shù)概念中的共軛復(fù)數(shù),屬于基礎(chǔ)題.5、B【解析】

先列舉出不超過的素數(shù),并列舉出所有的基本事件以及事件“在不超過的素數(shù)中,隨機選取個不同的素數(shù)、,滿足”所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【詳解】不超過的素數(shù)有:、、、、、,在不超過的素數(shù)中,隨機選取個不同的素數(shù),所有的基本事件有:、、、、、、、、、、、、、、,共種情況,其中,事件“在不超過的素數(shù)中,隨機選取個不同的素數(shù)、,且”包含的基本事件有:、、、,共種情況,因此,所求事件的概率為.故選:B.【點睛】本題考查古典概型概率的計算,一般利用列舉法列舉出基本事件,考查計算能力,屬于基礎(chǔ)題.6、B【解析】

由可得;由過點所作的圓的兩條切線互相垂直可得,又焦點到雙曲線漸近線的距離為,則,進而求解.【詳解】,所以離心率,又圓是以為圓心,半徑的圓,要使得經(jīng)過點所作的圓的兩條切線互相垂直,必有,而焦點到雙曲線漸近線的距離為,所以,即,所以,所以雙曲線的離心率的取值范圍是.故選:B【點睛】本題考查雙曲線的離心率的范圍,考查雙曲線的性質(zhì)的應(yīng)用.7、D【解析】

根據(jù)統(tǒng)計數(shù)據(jù),求出頻率,用以估計概率.【詳解】.故選:D.【點睛】本題以數(shù)學(xué)文化為背景,考查利用頻率估計概率,屬于基礎(chǔ)題.8、C【解析】

根據(jù)抽樣方式的特征,可判斷①;根據(jù)相關(guān)系數(shù)的性質(zhì),可判斷②;根據(jù)獨立性檢驗的方法和步驟,可判斷③.【詳解】①根據(jù)抽樣是間隔相同,且樣本間無明顯差異,故①應(yīng)是系統(tǒng)抽樣,即①為假命題;②兩個隨機變量相關(guān)性越強,則相關(guān)系數(shù)的絕對值越接近于1;兩個隨機變量相關(guān)性越弱,則相關(guān)系數(shù)的絕對值越接近于0;故②為真命題;③對分類變量與的隨機變量的觀測值來說,越小,“與有關(guān)系”的把握程度越小,故③為假命題.故選:.【點睛】本題以命題的真假判斷為載體考查了抽樣方法、相關(guān)系數(shù)、獨立性檢驗等知識點,屬于基礎(chǔ)題.9、A【解析】

畫出函數(shù)的圖像,函數(shù)對稱軸方程為,由圖可得與關(guān)于對稱,即得解.【詳解】函數(shù)的圖像如圖,對稱軸方程為,,又,由圖可得與關(guān)于對稱,故選:A【點睛】本題考查了正弦型函數(shù)的對稱性,考查了學(xué)生綜合分析,數(shù)形結(jié)合,數(shù)學(xué)運算的能力,屬于中檔題.10、B【解析】

由的單調(diào)性,可判斷p是真命題;分類討論打開絕對值,可得q是假命題,依次分析即得解【詳解】由函數(shù)是R上的增函數(shù),知命題p是真命題.對于命題q,當(dāng),即時,;當(dāng),即時,,由,得,無解,因此命題q是假命題.所以為假命題,A錯誤;為真命題,B正確;為假命題,C錯誤;為真命題,D錯誤.故選:B【點睛】本題考查了命題的邏輯連接詞,考查了學(xué)生邏輯推理,分類討論,數(shù)學(xué)運算的能力,屬于中檔題.11、D【解析】

用去換中的n,得,相加即可找到數(shù)列的周期,再利用計算.【詳解】由已知,①,所以②,①+②,得,從而,數(shù)列是以6為周期的周期數(shù)列,且前6項分別為1,2,1,-1,-2,-1,所以,.故選:D.【點睛】本題考查周期數(shù)列的應(yīng)用,在求時,先算出一個周期的和即,再將表示成即可,本題是一道中檔題.12、B【解析】分析:首先利用同角三角函數(shù)關(guān)系式,結(jié)合題中所給的角的范圍,求得的值,之后借助于倍角公式,將待求的式子轉(zhuǎn)化為關(guān)于的式子,代入從而求得結(jié)果.詳解:根據(jù)題中的條件,可得為銳角,根據(jù),可求得,而,故選B.點睛:該題考查的是有關(guān)同角三角函數(shù)關(guān)系式以及倍角公式的應(yīng)用,在解題的過程中,需要對已知真切求余弦的方法要明確,可以應(yīng)用同角三角函數(shù)關(guān)系式求解,也可以結(jié)合三角函數(shù)的定義式求解.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

當(dāng)時,,可得到,再用累乘法求出,再求出,根據(jù)定義求出,再借助單調(diào)性求解.【詳解】解:當(dāng)時,,則,,當(dāng)時,,,,,,(當(dāng)且僅當(dāng)時等號成立),,故答案為:.【點睛】本題主要考查已知求,累乘法,主要考查計算能力,屬于中檔題.14、0.22.【解析】

正態(tài)曲線關(guān)于x=μ對稱,根據(jù)對稱性以及概率和為1求解即可?!驹斀狻俊军c睛】本題考查正態(tài)分布曲線的特點及曲線所表示的意義,是一個基礎(chǔ)題.15、【解析】

根據(jù)題意畫出圖形,設(shè),利用三角形相似求得的值,代入三角形的面積公式,即可求解.【詳解】如圖所示,設(shè),由與相似,可得,解得,再由與相似,可得,解得,由三角形的面積公式,可得的面積為.故答案為:.【點睛】本題主要考查了直線與圓的位置關(guān)系的應(yīng)用,以及三角形相似的應(yīng)用,著重考查了數(shù)形結(jié)合思想,以及推理與運算能力,屬于基礎(chǔ)題.16、【解析】

根據(jù)等比數(shù)列通項公式,首先求得,然后求得.【詳解】設(shè)的公比為,由,得,故.故答案為:【點睛】本小題主要考查等比數(shù)列通項公式的基本量計算,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)將函數(shù)的解析式表示為分段函數(shù),然后分、、三段求解不等式,綜合可得出不等式的解集;(2)求出函數(shù)的最大值,由題意得出,解此不等式即可得出實數(shù)的取值范圍.【詳解】.(1)當(dāng)時,由,解得,此時;當(dāng)時,由,解得,此時;當(dāng)時,由,解得,此時.綜上所述,不等式的解集;(2)當(dāng)時,函數(shù)單調(diào)遞增,則;當(dāng)時,函數(shù)單調(diào)遞減,則,即;當(dāng)時,函數(shù)單調(diào)遞減,則.綜上所述,函數(shù)的最大值為,由題知,,解得.因此,實數(shù)的取值范圍是.【點睛】本題考查含絕對值不等式的求解,同時也考查了絕對值不等式中的參數(shù)問題,考查分類討論思想的應(yīng)用,考查運算求解能力,屬于中等題.18、(1)(2)【解析】

(1)利用分段討論法去掉絕對值,結(jié)合圖象,從而求得不等式的解集;(2)求出函數(shù)的最小值,把問題化為,從而求得的取值范圍.【詳解】(1)當(dāng)時,則所以不等式的解集為.(2)等價于,而,故等價于,所以或,即或,所以實數(shù)a的取值范圍為.【點睛】本題考查含有絕對值的不等式解法、不等式恒成立問題,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、分類討論思想,考查邏輯推理能力、運算求解能力,難度一般.19、(Ⅰ)(Ⅱ)1【解析】

(Ⅰ)由題,得,,解方程組,即可得到本題答案;(Ⅱ)設(shè)直線,則直線,聯(lián)立,得,聯(lián)立,得,由此即可得到本題答案.【詳解】(Ⅰ)由題可得,即,,將點代入方程得,即,解得,所以橢圓的方程為:;(Ⅱ)由(Ⅰ)知,設(shè)直線,則直線,聯(lián)立,整理得,所以,聯(lián)立,整理得,設(shè),則,所以,所以.【點睛】本題主要考查橢圓標(biāo)準(zhǔn)方程的求法以及直線與橢圓的綜合問題,考查學(xué)生的運算求解能力.20、解:設(shè)特征向量為α=對應(yīng)的特征值為λ,則=λ,即因為k≠0,所以a=2.5分因為,所以A=,即=,所以2+k=3,解得k=2.綜上,a=2,k=2.20分【解析】試題分析:由特征向量求矩陣A,由逆矩陣求k考點:特征向量,逆矩陣點評:本題主要考查了二階矩陣,以及特征值與特征向量的計算,考查逆矩陣.21、(1)見解析;(2)-∞,1【解析】

(1)f′(x)=(x+1)ex-ax-a=(x+1)(ex-a).對a分類討論,即可得出單調(diào)性.

(2)由xex-ax-a+1≥0,可得a(x+1)≤xex+1,當(dāng)x=-1時,0≤-1e+1恒成立.當(dāng)x>-1時,a≤xe【詳解】解法一:(1)f①當(dāng)a≤0時,x(-∞-1(-1,+∞)f-0+f(x)↘極小值↗所以f(x)在(-∞,-1)上單調(diào)遞減,在(-1,+∞)單調(diào)遞增.②當(dāng)a>0時,f'(x)=0的根為x=ln若lna>-1,即a>x(-∞,-1)-1(-1,ln(f+0-0+f(x)↗極大值↘極小值↗所以f(x)在(-∞,-1),(lna,+∞)上單調(diào)遞增,在若lna=-1,即a=f'(x)≥0在(-∞,+∞)上恒成立,所以f(x)在若lna<-1,即0<a<x(-∞,ln(-1(-1,+∞)f+0-0+f(x)↗極

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論