版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆福建省惠安一中等5月高三月考數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線,過原點作一條傾斜角為直線分別交雙曲線左、右兩支P,Q兩點,以線段PQ為直徑的圓過右焦點F,則雙曲線離心率為A. B. C.2 D.2.劉徽是我國魏晉時期偉大的數(shù)學家,他在《九章算術》中對勾股定理的證明如圖所示.“勾自乘為朱方,股自乘為青方,令出入相補,各從其類,因就其余不移動也.合成弦方之冪,開方除之,即弦也”.已知圖中網(wǎng)格紙上小正方形的邊長為1,其中“正方形為朱方,正方形為青方”,則在五邊形內(nèi)隨機取一個點,此點取自朱方的概率為()A. B. C. D.3.為得到y(tǒng)=sin(2x-πA.向左平移π3個單位B.向左平移πC.向右平移π3個單位D.向右平移π4.蒙特卡洛算法是以概率和統(tǒng)計的理論、方法為基礎的一種計算方法,將所求解的問題同一定的概率模型相聯(lián)系;用均勻投點實現(xiàn)統(tǒng)計模擬和抽樣,以獲得問題的近似解,故又稱統(tǒng)計模擬法或統(tǒng)計實驗法.現(xiàn)向一邊長為的正方形模型內(nèi)均勻投點,落入陰影部分的概率為,則圓周率()A. B.C. D.5.已知集合,則()A. B. C. D.6.已知為非零向量,“”為“”的()A.充分不必要條件 B.充分必要條件C.必要不充分條件 D.既不充分也不必要條件7.設復數(shù)滿足,在復平面內(nèi)對應的點為,則不可能為()A. B. C. D.8.雙曲線x26-y23=1的漸近線與圓(x-3)2+y2=A.3 B.2C.3 D.69.某校在高一年級進行了數(shù)學競賽(總分100分),下表為高一·一班40名同學的數(shù)學競賽成績:555759616864625980889895607388748677799497100999789818060796082959093908580779968如圖的算法框圖中輸入的為上表中的學生的數(shù)學競賽成績,運行相應的程序,輸出,的值,則()A.6 B.8 C.10 D.1210.已知圓:,圓:,點、分別是圓、圓上的動點,為軸上的動點,則的最大值是()A. B.9 C.7 D.11.雙曲線的左右焦點為,一條漸近線方程為,過點且與垂直的直線分別交雙曲線的左支及右支于,滿足,則該雙曲線的離心率為()A. B.3 C. D.212.若的展開式中含有常數(shù)項,且的最小值為,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的左右焦點分別為,過的直線與雙曲線左支交于兩點,,的內(nèi)切圓的圓心的縱坐標為,則雙曲線的離心率為________.14.已知數(shù)列滿足,則________.15.在直角坐標系中,已知點和點,若點在的平分線上,且,則向量的坐標為___________.16.若存在實數(shù)使得不等式在某區(qū)間上恒成立,則稱與為該區(qū)間上的一對“分離函數(shù)”,下列各組函數(shù)中是對應區(qū)間上的“分離函數(shù)”的有___________.(填上所有正確答案的序號)①,,;②,,;③,,;④,,.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)選修4-5:不等式選講已知函數(shù)f(x)=log2(|x+1|+|x﹣2|﹣m).(1)當m=7時,求函數(shù)f(x)的定義域;(2)若關于x的不等式f(x)≥2的解集是R,求m的取值范圍.18.(12分)如圖,在棱長為的正方形中,,分別為,邊上的中點,現(xiàn)以為折痕將點旋轉至點的位置,使得為直二面角.(1)證明:;(2)求與面所成角的正弦值.19.(12分)如圖,四棱錐中,底面是矩形,面底面,且是邊長為的等邊三角形,在上,且面.(1)求證:是的中點;(2)在上是否存在點,使二面角為直角?若存在,求出的值;若不存在,說明理由.20.(12分)如圖,直三棱柱中,底面為等腰直角三角形,,,,分別為,的中點,為棱上一點,若平面.(1)求線段的長;(2)求二面角的余弦值.21.(12分)已知滿足,且,求的值及的面積.(從①,②,③這三個條件中選一個,補充到上面問題中,并完成解答.)22.(10分)已知函數(shù),.(1)當時,①求函數(shù)在點處的切線方程;②比較與的大小;(2)當時,若對時,,且有唯一零點,證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
求得直線的方程,聯(lián)立直線的方程和雙曲線的方程,求得兩點坐標的關系,根據(jù)列方程,化簡后求得離心率.【詳解】設,依題意直線的方程為,代入雙曲線方程并化簡得,故,設焦點坐標為,由于以為直徑的圓經(jīng)過點,故,即,即,即,兩邊除以得,解得.故,故選B.【點睛】本小題主要考查直線和雙曲線的交點,考查圓的直徑有關的幾何性質,考查運算求解能力,屬于中檔題.2、C【解析】
首先明確這是一個幾何概型面積類型,然后求得總事件的面積和所研究事件的面積,代入概率公式求解.【詳解】因為正方形為朱方,其面積為9,五邊形的面積為,所以此點取自朱方的概率為.故選:C【點睛】本題主要考查了幾何概型的概率求法,還考查了數(shù)形結合的思想和運算求解的能力,屬于基礎題.3、D【解析】試題分析:因為,所以為得到y(tǒng)=sin(2x-π3)的圖象,只需要將考點:三角函數(shù)的圖像變換.4、A【解析】
計算出黑色部分的面積與總面積的比,即可得解.【詳解】由,∴.故選:A【點睛】本題考查了面積型幾何概型的概率的計算,屬于基礎題.5、A【解析】
考慮既屬于又屬于的集合,即得.【詳解】.故選:【點睛】本題考查集合的交運算,屬于基礎題.6、B【解析】
由數(shù)量積的定義可得,為實數(shù),則由可得,根據(jù)共線的性質,可判斷;再根據(jù)判斷,由等價法即可判斷兩命題的關系.【詳解】若成立,則,則向量與的方向相同,且,從而,所以;若,則向量與的方向相同,且,從而,所以.所以“”為“”的充分必要條件.故選:B【點睛】本題考查充分條件和必要條件的判定,考查相等向量的判定,考查向量的模、數(shù)量積的應用.7、D【解析】
依題意,設,由,得,再一一驗證.【詳解】設,因為,所以,經(jīng)驗證不滿足,故選:D.【點睛】本題主要考查了復數(shù)的概念、復數(shù)的幾何意義,還考查了推理論證能力,屬于基礎題.8、A【解析】
由圓心到漸近線的距離等于半徑列方程求解即可.【詳解】雙曲線的漸近線方程為y=±22x,圓心坐標為(3,0).由題意知,圓心到漸近線的距離等于圓的半徑r,即r=±答案:A【點睛】本題考查了雙曲線的漸近線方程及直線與圓的位置關系,屬于基礎題.9、D【解析】
根據(jù)程序框圖判斷出的意義,由此求得的值,進而求得的值.【詳解】由題意可得的取值為成績大于等于90的人數(shù),的取值為成績大于等于60且小于90的人數(shù),故,,所以.故選:D【點睛】本小題考查利用程序框圖計算統(tǒng)計量等基礎知識;考查運算求解能力,邏輯推理能力和數(shù)學應用意識.10、B【解析】試題分析:圓的圓心,半徑為,圓的圓心,半徑是.要使最大,需最大,且最小,最大值為的最小值為,故最大值是;關于軸的對稱點,,故的最大值為,故選B.考點:圓與圓的位置關系及其判定.【思路點睛】先根據(jù)兩圓的方程求出圓心和半徑,要使最大,需最大,且最小,最大值為的最小值為,故最大值是,再利用對稱性,求出所求式子的最大值.11、A【解析】
設,直線的方程為,聯(lián)立方程得到,,根據(jù)向量關系化簡到,得到離心率.【詳解】設,直線的方程為.聯(lián)立整理得,則.因為,所以為線段的中點,所以,,整理得,故該雙曲線的離心率.故選:.【點睛】本題考查了雙曲線的離心率,意在考查學生的計算能力和轉化能力.12、C【解析】展開式的通項為,因為展開式中含有常數(shù)項,所以,即為整數(shù),故n的最小值為1.所以.故選C點睛:求二項展開式有關問題的常見類型及解題策略(1)求展開式中的特定項.可依據(jù)條件寫出第項,再由特定項的特點求出值即可.(2)已知展開式的某項,求特定項的系數(shù).可由某項得出參數(shù)項,再由通項寫出第項,由特定項得出值,最后求出其參數(shù).二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】
由題意畫出圖形,設內(nèi)切圓的圓心為,圓分別切于,可得四邊形為正方形,再由圓的切線的性質結臺雙曲線的定義,求得的內(nèi)切圓的圓心的縱坐標,結合已知列式,即可求得雙曲線的離心率.【詳解】設內(nèi)切圓的圓心為,圓分別切于,連接,則,故四邊形為正方形,邊長為圓的半徑,由,,得,與重合,,,即——①,——②聯(lián)立①②解得:,又因圓心的縱坐標為,.故答案為:【點睛】本題考查雙曲線的幾何性質,考查數(shù)形結合思想與運算求解能力,屬于中檔題.14、【解析】
項和轉化可得,討論是否滿足,分段表示即得解【詳解】當時,由已知,可得,∵,①故,②由①-②得,∴.顯然當時不滿足上式,∴故答案為:【點睛】本題考查了利用求,考查了學生綜合分析,轉化劃歸,數(shù)學運算,分類討論的能力,屬于中檔題.15、【解析】
點在的平分線可知與向量共線,利用線性運算求解即可.【詳解】因為點在的平線上,所以存在使,而,可解得,所以,故答案為:【點睛】本題主要考查了向量的線性運算,利用向量的坐標求向量的模,屬于中檔題.16、①②④【解析】
由題意可知,若要存在使得成立,我們可考慮兩函數(shù)是否存在公切點,若兩函數(shù)在公切點對應的位置一個單增,另一個單減,則很容易判斷,對①,③,④都可以采用此法判斷,對②分析式子特點可知,,進而判斷【詳解】①時,令,則,單調遞增,,即.令,則,單調遞減,,即,因此,滿足題意.②時,易知,滿足題意.③注意到,因此如果存在直線,只有可能是(或)在處的切線,,因此切線為,易知,,因此不存在直線滿足題意.④時,注意到,因此如果存在直線,只有可能是(或)在處的切線,,因此切線為.令,則,易知在上單調遞增,在上單調遞減,所以,即.令,則,易知在上單調遞減,在上單調遞增,所以,即.因此,滿足題意.故答案為:①②④【點睛】本題考查新定義題型、利用導數(shù)研究函數(shù)圖像,轉化與化歸思想,屬于中檔題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),(2)【解析】試題分析:用零點分區(qū)間討論法解含絕對值的不等式,根據(jù)絕對值三角不等式得出,不等式|x+1|+|x﹣2|≥m+4解集是R,只需m+4≤3,得出的范圍.試題解析:(1)由題設知:|x+1|+|x﹣2|>7,不等式的解集是以下不等式組解集的并集:,或,或,解得函數(shù)f(x)的定義域為(﹣∞,﹣3)∪(4,+∞).(2)不等式f(x)≥2即|x+1|+|x﹣2|≥m+4,∵x∈R時,恒有|x+1|+|x﹣2|≥|(x+1)﹣(x﹣2)|=3,不等式|x+1|+|x﹣2|≥m+4解集是R,∴m+4≤3,m的取值范圍是(﹣∞,﹣1].18、(1)證明見詳解;(2)【解析】
(1)在折疊前的正方形ABCD中,作出對角線AC,BD,由正方形性質知,又//,則于點H,則由直二面角可知面,故.又,則面,故命題得證;(2)作出線面角,在直角三角形中求解該角的正弦值.【詳解】解:(1)證明:在正方形中,連結交于.因為//,故可得,即又旋轉不改變上述垂直關系,且平面,面,又面,所以(2)因為為直二面角,故平面平面,又其交線為,且平面,故可得底面,連結,則即為與面所成角,連結交于,在中,,在中,.所以與面所成角的正弦值為.【點睛】本題考查了線面垂直的證明與性質,利用定義求線面角,屬于中檔題.19、(1)見解析;(2).【解析】試題分析:(1)連交于可得是中點,再根據(jù)面可得進而根據(jù)中位線定理可得結果;(2)取中點,由(1)知兩兩垂直.以為原點,所在直線分別為軸,軸,軸建立空間直角坐標系,求出面的一個法向量,用表示面的一個法向量,由可得結果.試題解析:(1)證明:連交于,連是矩形,是中點.又面,且是面與面的交線,是的中點.(2)取中點,由(1)知兩兩垂直.以為原點,所在直線分別為軸,軸,軸建立空間直角坐標系(如圖),則各點坐標為.設存在滿足要求,且,則由得:,面的一個法向量為,面的一個法向量為,由,得,解得,故存在,使二面角為直角,此時.20、(1)(2)【解析】
(1)先證得,設與交于點,在中解直角三角形求得,由此求得的值.(2)建立空間直角坐標系,利用平面和平面的法向量,計算出二面角的余弦值.【詳解】(1)由題意,,設與交于點,在中,可求得,則,可求得,則(2)以為原點,方向為軸,方向為軸,方向為軸,建立空間直角坐標系.,,,,,易得平面的法向量為.,,易得平面的法向量為.設二面角為,由圖可知為銳角,所以.即二面角的余弦值為.【點睛】本小題主要考查根據(jù)線面垂直求邊長,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.21、見解析【解析】
選擇①時:,,計算,根據(jù)正弦定理得到,計算面積得到答案;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 【名師一號】2022屆高三數(shù)學一輪總復習基礎練習:第九章-算法初步、統(tǒng)計與統(tǒng)計案例9-1-
- 【創(chuàng)新設計】2021高考化學總復習(江西版)作業(yè)本:熱點回頭專練4-以框圖推斷為背景的無機綜合應用題
- 《ADDA轉換-概述》課件
- 六年級下冊英語第一單元單詞
- 【名師一號】2020-2021學年高中地湘教版必修1-雙基限時練11
- 【高考復習方案】2022年高考數(shù)學(理)復習一輪作業(yè)手冊:第54講-直線與圓錐曲線的位置關系-
- 二年級數(shù)學(上)計算題專項練習匯編
- 四年級數(shù)學(小數(shù)加減運算)計算題專項練習與答案
- 2022年高考化學專題
- 【全程復習方略】2020年高考化學課時提能演練(二)-1.2-氯及其化合物(魯科版-福建專供)
- 建筑施工現(xiàn)場農(nóng)民工維權告示牌
- 醫(yī)療醫(yī)學醫(yī)生護士工作PPT模板
- 口腔門診規(guī)章制度.-口腔診所12個規(guī)章制度
- 2022年版物理課程標準的特點探討與實施建議
- 幼兒園班級安全教育活動計劃表
- ppt模板:創(chuàng)意中國風古風水墨山水通用模板課件
- 紡紗學-ppt課件
- (高清版)嚴寒和寒冷地區(qū)居住建筑節(jié)能設計標準JGJ26-2018
- 項目經(jīng)理績效考核評分表
- .運維服務目錄
- 造紙化學品及其應用
評論
0/150
提交評論