新高考數(shù)學(xué)一輪復(fù)習(xí)知識(shí)清單+鞏固練習(xí)專題12 數(shù)列通項(xiàng)及數(shù)列前n項(xiàng)和求法(解析版)_第1頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)知識(shí)清單+鞏固練習(xí)專題12 數(shù)列通項(xiàng)及數(shù)列前n項(xiàng)和求法(解析版)_第2頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)知識(shí)清單+鞏固練習(xí)專題12 數(shù)列通項(xiàng)及數(shù)列前n項(xiàng)和求法(解析版)_第3頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)知識(shí)清單+鞏固練習(xí)專題12 數(shù)列通項(xiàng)及數(shù)列前n項(xiàng)和求法(解析版)_第4頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)知識(shí)清單+鞏固練習(xí)專題12 數(shù)列通項(xiàng)及數(shù)列前n項(xiàng)和求法(解析版)_第5頁(yè)
已閱讀5頁(yè),還剩18頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

專題12數(shù)列通項(xiàng)及數(shù)列前n項(xiàng)和求法一、知識(shí)速覽二、考點(diǎn)速覽知識(shí)點(diǎn)1數(shù)列的遞推公式1、遞推公式:如果已知數(shù)列{an}的第1項(xiàng)(或前幾項(xiàng)),且從第二項(xiàng)(或某一項(xiàng))開(kāi)始的任一項(xiàng)an與它的前一項(xiàng)an-1(或前幾項(xiàng))間的關(guān)系可以用一個(gè)公式來(lái)表示,那么這個(gè)公式就叫做這個(gè)數(shù)列的遞推公式.2、通項(xiàng)公式和遞推公式的異同點(diǎn)不同點(diǎn)相同點(diǎn)通項(xiàng)公式可根據(jù)某項(xiàng)的序號(hào)n的值,直接代入求出an都可確定一個(gè)數(shù)列,也都可求出數(shù)列的任意一項(xiàng)遞推公式可根據(jù)第一項(xiàng)(或前幾項(xiàng))的值,通過(guò)一次(或多次)賦值,逐項(xiàng)求出數(shù)列的項(xiàng),直至求出所需的an,也可通過(guò)變形轉(zhuǎn)化,直接求出an知識(shí)點(diǎn)2數(shù)列通項(xiàng)公式的求法1、觀察法:已知數(shù)列前若干項(xiàng),求該數(shù)列的通項(xiàng)時(shí),一般對(duì)所給的項(xiàng)觀察分析,尋找規(guī)律,從而根據(jù)規(guī)律寫(xiě)出此數(shù)列的一個(gè)通項(xiàng).2、公式法(1)使用范圍:若已知數(shù)列的前項(xiàng)和與SKIPIF1<0的關(guān)系,求數(shù)列SKIPIF1<0的通項(xiàng)SKIPIF1<0可用公式SKIPIF1<0構(gòu)造兩式作差求解.(2)用此公式時(shí)要注意結(jié)論有兩種可能,一種是“一分為二”,即分段式;另一種是“合二為一”,即SKIPIF1<0和SKIPIF1<0合為一個(gè)表達(dá),(要先分SKIPIF1<0和SKIPIF1<0兩種情況分別進(jìn)行運(yùn)算,然后驗(yàn)證能否統(tǒng)一).3、累加法:適用于an+1=an+f(n),可變形為an+1-an=f(n)要點(diǎn):利用恒等式an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)(n≥2,n∈N*)求解4、累乘法:適用于an+1=f(n)an,可變形為eq\f(an+1,an)=f(n)要點(diǎn):利用恒等式an=a1·eq\f(a2,a1)·eq\f(a3,a2)·…·eq\f(an,an-1)(an≠0,n≥2,n∈N*)求解5、構(gòu)造法:對(duì)于不滿足an+1=an+f(n),an+1=f(n)an形式的遞推關(guān)系,常采用構(gòu)造法要點(diǎn):對(duì)所給的遞推公式進(jìn)行變形構(gòu)造等差數(shù)列或等比數(shù)列進(jìn)行求解類(lèi)型一:形如SKIPIF1<0(其中SKIPIF1<0均為常數(shù)且SKIPIF1<0)型的遞推式:(1)若SKIPIF1<0時(shí),數(shù)列{SKIPIF1<0}為等差數(shù)列;(2)若SKIPIF1<0時(shí),數(shù)列{SKIPIF1<0}為等比數(shù)列;(3)若SKIPIF1<0且SKIPIF1<0時(shí),數(shù)列{SKIPIF1<0}為線性遞推數(shù)列,其通項(xiàng)可通過(guò)待定系數(shù)法構(gòu)造等比數(shù)列來(lái)求.方法有如下兩種:法一:設(shè)SKIPIF1<0,展開(kāi)移項(xiàng)整理得SKIPIF1<0,與題設(shè)SKIPIF1<0比較系數(shù)(待定系數(shù)法)得SKIPIF1<0SKIPIF1<0,即SKIPIF1<0構(gòu)成以SKIPIF1<0為首項(xiàng),以SKIPIF1<0為公比的等比數(shù)列.再利用等比數(shù)列的通項(xiàng)公式求出SKIPIF1<0的通項(xiàng)整理可得SKIPIF1<0法二:由SKIPIF1<0得SKIPIF1<0兩式相減并整理得SKIPIF1<0即SKIPIF1<0構(gòu)成以SKIPIF1<0為首項(xiàng),以SKIPIF1<0為公比的等比數(shù)列.求出SKIPIF1<0的通項(xiàng)再轉(zhuǎn)化為累加法便可求出SKIPIF1<0類(lèi)型二:形如SKIPIF1<0SKIPIF1<0型的遞推式:(1)當(dāng)SKIPIF1<0為一次函數(shù)類(lèi)型(即等差數(shù)列)時(shí):法一:設(shè)SKIPIF1<0,通過(guò)待定系數(shù)法確定SKIPIF1<0的值,轉(zhuǎn)化成以SKIPIF1<0為首項(xiàng),以SKIPIF1<0為公比的等比數(shù)列SKIPIF1<0,再利用等比數(shù)列的通項(xiàng)公式求出SKIPIF1<0的通項(xiàng)整理可得SKIPIF1<0法二:當(dāng)SKIPIF1<0的公差為SKIPIF1<0時(shí),由遞推式得:SKIPIF1<0,SKIPIF1<0兩式相減得:SKIPIF1<0,令SKIPIF1<0得:SKIPIF1<0轉(zhuǎn)化為類(lèi)型Ⅴ㈠求出SKIPIF1<0,再用累加法便可求出SKIPIF1<0(2)當(dāng)SKIPIF1<0為指數(shù)函數(shù)類(lèi)型(即等比數(shù)列)時(shí):法一:設(shè)SKIPIF1<0,通過(guò)待定系數(shù)法確定SKIPIF1<0的值,轉(zhuǎn)化成以SKIPIF1<0為首項(xiàng),以SKIPIF1<0為公比的等比數(shù)列SKIPIF1<0,再利用等比數(shù)列的通項(xiàng)公式求出SKIPIF1<0的通項(xiàng)整理可得SKIPIF1<0法二:當(dāng)SKIPIF1<0的公比為SKIPIF1<0時(shí),由遞推式得:SKIPIF1<0—①,SKIPIF1<0,兩邊同時(shí)乘以SKIPIF1<0得SKIPIF1<0—②,由①②兩式相減得SKIPIF1<0,即SKIPIF1<0,構(gòu)造等比數(shù)列。法三:遞推公式為SKIPIF1<0(其中p,q均為常數(shù))或SKIPIF1<0(其中p,q,r均為常數(shù))時(shí),要先在原遞推公式兩邊同時(shí)除以SKIPIF1<0,得:SKIPIF1<0,引入輔助數(shù)列SKIPIF1<0(其中SKIPIF1<0),得:SKIPIF1<0,再結(jié)合第一種類(lèi)型。6、取倒數(shù)法:an+1=eq\f(pan,qan+r)(p,q,r是常數(shù)),可變形為eq\f(1,an+1)=eq\f(r,p)·eq\f(1,an)+eq\f(q,p)要點(diǎn):①若p=r,則eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(1,an)))是等差數(shù)列,且公差為eq\f(q,p),可用公式求通項(xiàng);②若p≠r,則轉(zhuǎn)化為an+1=san+t型,再利用待定系數(shù)法構(gòu)造新數(shù)列求解7、三項(xiàng)遞推構(gòu)造:適用于形如SKIPIF1<0型的遞推式用待定系數(shù)法,化為特殊數(shù)列SKIPIF1<0的形式求解.方法為:設(shè)SKIPIF1<0,比較系數(shù)得SKIPIF1<0,可解得SKIPIF1<0,于是SKIPIF1<0是公比為SKIPIF1<0的等比數(shù)列,這樣就化歸為SKIPIF1<0型.8、不動(dòng)點(diǎn)法(1)定義:方程SKIPIF1<0的根稱為函數(shù)SKIPIF1<0的不動(dòng)點(diǎn).利用函數(shù)SKIPIF1<0的不動(dòng)點(diǎn),可將某些遞推關(guān)系SKIPIF1<0所確定的數(shù)列化為等比數(shù)列或較易求通項(xiàng)的數(shù)列,這種求數(shù)列通項(xiàng)的方法稱為不動(dòng)點(diǎn)法.(2)在數(shù)列SKIPIF1<0中,SKIPIF1<0已知,且SKIPIF1<0時(shí),SKIPIF1<0(SKIPIF1<0是常數(shù)),=1\*GB3①當(dāng)SKIPIF1<0時(shí),數(shù)列SKIPIF1<0為等差數(shù)列;=2\*GB3②當(dāng)SKIPIF1<0時(shí),數(shù)列SKIPIF1<0為常數(shù)數(shù)列;=3\*GB3③當(dāng)SKIPIF1<0時(shí),數(shù)列SKIPIF1<0為等比數(shù)列;=4\*GB3④當(dāng)SKIPIF1<0時(shí),稱SKIPIF1<0是數(shù)列SKIPIF1<0的一階特征方程,其根SKIPIF1<0叫做特征方程的特征根,這時(shí)數(shù)列SKIPIF1<0的通項(xiàng)公式為:SKIPIF1<0;(3)形如SKIPIF1<0,SKIPIF1<0,SKIPIF1<0(SKIPIF1<0是常數(shù))的二階遞推數(shù)列都可用特征根法求得通項(xiàng)SKIPIF1<0,其特征方程為SKIPIF1<0(*).(1)若方程(*)有二異根SKIPIF1<0、SKIPIF1<0,則可令SKIPIF1<0(SKIPIF1<0、SKIPIF1<0是待定常數(shù));(2)若方程(*)有二重根SKIPIF1<0SKIPIF1<0,則可令SKIPIF1<0(SKIPIF1<0、SKIPIF1<0是待定常數(shù)).(其中SKIPIF1<0、SKIPIF1<0可利用SKIPIF1<0,SKIPIF1<0求得)知識(shí)點(diǎn)3幾種數(shù)列求和的常用方法1、公式法(1)等差數(shù)列SKIPIF1<0的前n項(xiàng)和SKIPIF1<0,推導(dǎo)方法:倒序相加法.(2)等比數(shù)列SKIPIF1<0的前n項(xiàng)和SKIPIF1<0,推導(dǎo)方法:乘公比,錯(cuò)位相減法.(3)一些常見(jiàn)的數(shù)列的前n項(xiàng)和:①SKIPIF1<0;SKIPIF1<0②SKIPIF1<0;③SKIPIF1<0;=4\*GB3④SKIPIF1<02、分組轉(zhuǎn)化法求和(1)適用范圍:某些數(shù)列的求和是將數(shù)列轉(zhuǎn)化為若干個(gè)可求和的新數(shù)列的和或差,從而求得原數(shù)列的和,注意在含有字母的數(shù)列中對(duì)字母的討論.(2)常見(jiàn)類(lèi)型:=1\*GB3①若an=bn±cn,且{bn},{cn}為等差或等比數(shù)列;=2\*GB3②通項(xiàng)公式為an=eq\b\lc\{(\a\vs4\al\co1(bn,n為奇數(shù),,cn,n為偶數(shù)))的數(shù)列,其中數(shù)列{bn},{cn}是等比數(shù)列或等差數(shù)列.3、并項(xiàng)求和法:一個(gè)數(shù)列的前n項(xiàng)和中,可兩兩結(jié)合求解,則稱之為并項(xiàng)求和.形如an=(-1)nf(n)類(lèi)型,可采用兩項(xiàng)合并求解.例如,SKIPIF1<0.4、倒序相加法:如果一個(gè)數(shù)列{an}的前n項(xiàng)中首末兩端等“距離”的兩項(xiàng)的和相等或等于同一個(gè)常數(shù),那么求這個(gè)數(shù)列的前n項(xiàng)和即可用倒序相加法,如等差數(shù)列的前n項(xiàng)和公式即是用此法推導(dǎo)的.5、裂項(xiàng)相消法求和:如果一個(gè)數(shù)列的通項(xiàng)為分式或根式的形式,且能拆成結(jié)構(gòu)相同的兩式之差,那么通過(guò)累加將一些正、負(fù)項(xiàng)相互抵消,只剩下有限的幾項(xiàng),從而求出該數(shù)列的前n項(xiàng)和.6、錯(cuò)位相減法求和:如果一個(gè)數(shù)列的各項(xiàng)是由一個(gè)等差數(shù)列和一個(gè)等比數(shù)列的對(duì)應(yīng)項(xiàng)之積構(gòu)成的,那么這個(gè)數(shù)列的前n項(xiàng)和即可用錯(cuò)位相減法來(lái)求.一、已知Sn求an的三個(gè)步驟(1)利用a1=S1求出a1.(2)當(dāng)n≥2時(shí),利用an=Sn-Sn-1(n≥2)求出an的表達(dá)式.(3)看a1是否符合n≥2時(shí)an的表達(dá)式,如果符合,則可以把數(shù)列的通項(xiàng)公式合寫(xiě);否則應(yīng)寫(xiě)成分段的形式,即an=eq\b\lc\{\rc\(\a\vs4\al\co1(S1,n=1,,Sn-Sn-1,n≥2.))根據(jù)所求結(jié)果的不同要求,將問(wèn)題向兩個(gè)不同的方向轉(zhuǎn)化.(1)利用an=Sn-Sn-1(n≥2)轉(zhuǎn)化為只含Sn,Sn-1的關(guān)系式,再求解.(2)利用Sn-Sn-1=an(n≥2)轉(zhuǎn)化為只含an,an-1的關(guān)系式,再求解.【典例1】(2023·山東煙臺(tái)·校聯(lián)考三模)已知數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0()A.20B.19C.18D.17【答案】B【解析】因?yàn)镾KIPIF1<0,所以SKIPIF1<0①,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0②,①-②得,SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0是等差數(shù)列,公差SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0.故選:B【典例2】(2023·廣東廣州·高三??寄M預(yù)測(cè))已知數(shù)列SKIPIF1<0的各項(xiàng)均為正數(shù),記數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0,且滿足SKIPIF1<0,則下列說(shuō)法正確的是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】B【解析】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,解得SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),因?yàn)镾KIPIF1<0,代入SKIPIF1<0得:SKIPIF1<0,化簡(jiǎn)得:SKIPIF1<0,所以SKIPIF1<0是首項(xiàng)為SKIPIF1<0,公差為SKIPIF1<0的等差數(shù)列.所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,經(jīng)檢驗(yàn)SKIPIF1<0也成立,所以SKIPIF1<0,對(duì)于B:SKIPIF1<0,所以B正確.對(duì)于D:SKIPIF1<0SKIPIF1<0,所以D錯(cuò)誤.故選:B二、累加法求通項(xiàng)公式形如SKIPIF1<0型的遞推數(shù)列(其中SKIPIF1<0是關(guān)于SKIPIF1<0的函數(shù))可構(gòu)造:SKIPIF1<0【典例1】(2023·全國(guó)·高三專題練習(xí))若數(shù)列SKIPIF1<0滿足:SKIPIF1<0,SKIPIF1<0,則數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0.【答案】SKIPIF1<0【解析】由SKIPIF1<0,得SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,而SKIPIF1<0滿足上式,所以SKIPIF1<0.故答案為:SKIPIF1<0.【典例2】(2023·全國(guó)·高三專題練習(xí))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0,求數(shù)列SKIPIF1<0的通項(xiàng)公式.【答案】SKIPIF1<0(SKIPIF1<0).【解析】因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,原等式兩邊同除以SKIPIF1<0得,SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0(SKIPIF1<0),各式相加得,SKIPIF1<0SKIPIF1<0(SKIPIF1<0).則SKIPIF1<0(SKIPIF1<0).SKIPIF1<0(SKIPIF1<0),又當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,綜上所述,SKIPIF1<0(SKIPIF1<0).【典例3】(2023·全國(guó)·高三專題練習(xí))若SKIPIF1<0是函數(shù)SKIPIF1<0的極值點(diǎn),數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則數(shù)列SKIPIF1<0的通項(xiàng)公式SKIPIF1<0.【答案】SKIPIF1<0【解析】SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∴數(shù)列SKIPIF1<0是首項(xiàng)為2,公比為3的等比數(shù)列,∴SKIPIF1<0,則SKIPIF1<0故答案為:SKIPIF1<0三、累乘法求通項(xiàng)公式形如SKIPIF1<0SKIPIF1<0型的遞推數(shù)列(其中SKIPIF1<0是關(guān)于SKIPIF1<0的函數(shù))可構(gòu)造:SKIPIF1<0【典例1】(2023秋·江西宜春·高三校考開(kāi)學(xué)考試)若SKIPIF1<0,則通項(xiàng)公式SKIPIF1<0.【答案】SKIPIF1<0【解析】由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,……,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0滿足上式,所以SKIPIF1<0,故答案為:SKIPIF1<0【典例2】(2023·全國(guó)·高三專題練習(xí))在數(shù)列SKIPIF1<0中,SKIPIF1<0,求SKIPIF1<0.【答案】SKIPIF1<0【解析】在數(shù)列SKIPIF1<0中,SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0SKIPIF1<0,而SKIPIF1<0滿足上式,所以SKIPIF1<0.四、形如SKIPIF1<0的構(gòu)造法形如SKIPIF1<0(SKIPIF1<0為常數(shù),SKIPIF1<0且SKIPIF1<0)的遞推式,可構(gòu)造SKIPIF1<0,轉(zhuǎn)化為等比數(shù)列求解.也可以與類(lèi)比式SKIPIF1<0作差,由SKIPIF1<0,構(gòu)造SKIPIF1<0為等比數(shù)列,然后利用疊加法求通項(xiàng).【典例1】(2023春·四川瀘州·高三??奸_(kāi)學(xué)考試)若數(shù)列SKIPIF1<0滿足,SKIPIF1<0,SKIPIF1<0,則數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.【答案】SKIPIF1<0【解析】由SKIPIF1<0得SKIPIF1<0,所以數(shù)列SKIPIF1<0是以3為公比的等比數(shù)列,其中首項(xiàng)SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故答案為:SKIPIF1<0.【典例2】(2023·全國(guó)·高三對(duì)口高考)已知數(shù)列SKIPIF1<0中,SKIPIF1<0,且SKIPIF1<0(SKIPIF1<0,且SKIPIF1<0),則數(shù)列SKIPIF1<0的通項(xiàng)公式為.【答案】SKIPIF1<0【解析】由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0由所以SKIPIF1<0,于是數(shù)列SKIPIF1<0是以首項(xiàng)為SKIPIF1<0,公比為SKIPIF1<0的等比數(shù)列,因此SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此式滿足SKIPIF1<0,所以數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0.故答案為:SKIPIF1<0.【典例3】(2023·全國(guó)·高三專題練習(xí))已知數(shù)列SKIPIF1<0中,SKIPIF1<0且SKIPIF1<0,則數(shù)列SKIPIF1<0的通項(xiàng)公式為.【答案】SKIPIF1<0【解析】∵SKIPIF1<0,等式兩側(cè)同除SKIPIF1<0,可得SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0是以2為首項(xiàng),2為公比的等比數(shù)列,∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0.故答案為:SKIPIF1<0.五、形如SKIPIF1<0的構(gòu)造法形如SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0)的遞推式,當(dāng)SKIPIF1<0時(shí),兩邊同除以SKIPIF1<0轉(zhuǎn)化為關(guān)于SKIPIF1<0的等差數(shù)列;當(dāng)SKIPIF1<0時(shí),兩邊人可以同除以SKIPIF1<0得SKIPIF1<0,轉(zhuǎn)化為SKIPIF1<0.【典例1】(2023·全國(guó)·高三專題練習(xí))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,求數(shù)列SKIPIF1<0的通項(xiàng)公式.【答案】SKIPIF1<0【解析】解法一:因?yàn)镾KIPIF1<0,設(shè)SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0,則數(shù)列SKIPIF1<0是首項(xiàng)為SKIPIF1<0,公比為SKIPIF1<0的等比數(shù)列,所以SKIPIF1<0,即SKIPIF1<0;解法二:因?yàn)镾KIPIF1<0,兩邊同時(shí)除以SKIPIF1<0得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0是以SKIPIF1<0為首項(xiàng),SKIPIF1<0為公比的等比數(shù)列,所以SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0.【典例2】(2023·全國(guó)·高三專題練習(xí))設(shè)數(shù)列SKIPIF1<0滿足:SKIPIF1<0,SKIPIF1<0(SKIPIF1<0),數(shù)列SKIPIF1<0滿足:SKIPIF1<0.求數(shù)列SKIPIF1<0的通項(xiàng)公式.【答案】SKIPIF1<0.【解析】∵SKIPIF1<0,兩邊同時(shí)除以SKIPIF1<0得SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0.兩邊同時(shí)加上SKIPIF1<0得SKIPIF1<0.∴數(shù)列SKIPIF1<0是以SKIPIF1<0為首項(xiàng),SKIPIF1<0為公比的等比數(shù)列.∴SKIPIF1<0,∴SKIPIF1<0.∴SKIPIF1<0.又∵SKIPIF1<0,∴SKIPIF1<0,六、形如SKIPIF1<0的構(gòu)造法通過(guò)配湊轉(zhuǎn)化為SKIPIF1<0,通過(guò)待定系數(shù)法確定SKIPIF1<0的值,轉(zhuǎn)化成以SKIPIF1<0為首項(xiàng),以SKIPIF1<0為公比的等比數(shù)列SKIPIF1<0,再利用等比數(shù)列的通項(xiàng)公式求出SKIPIF1<0的通項(xiàng)整理可得SKIPIF1<0【典例1】(2023·全國(guó)·高三專題練習(xí))已知:SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,求SKIPIF1<0的通項(xiàng)公式.【答案】SKIPIF1<0【解析】設(shè)SKIPIF1<0,所以SKIPIF1<0,∴SKIPIF1<0,解得:SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0是以3為首項(xiàng),SKIPIF1<0為公比的等比數(shù)列,∴SKIPIF1<0,∴SKIPIF1<0.【典例2】(2022秋·河北保定·高三??计谥校┤鬝KIPIF1<0,SKIPIF1<0,則SKIPIF1<0;【答案】SKIPIF1<0【解析】設(shè)SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以數(shù)列SKIPIF1<0是一個(gè)以SKIPIF1<0為首項(xiàng),以2為公比的等比數(shù)列,所以SKIPIF1<0,所以SKIPIF1<0.【典例3】(2023·全國(guó)·高三專題練習(xí))設(shè)數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則數(shù)列SKIPIF1<0的通項(xiàng)公式為.【答案】SKIPIF1<0【解析】設(shè)SKIPIF1<0,化簡(jiǎn)后得SKIPIF1<0,與原遞推式比較,對(duì)應(yīng)項(xiàng)的系數(shù)相等,得SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0.故答案為:SKIPIF1<0七、取倒數(shù)法求通項(xiàng)對(duì)于SKIPIF1<0,取倒數(shù)得SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),數(shù)列SKIPIF1<0是等差數(shù)列;當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,則SKIPIF1<0,可用待定系數(shù)法求解.【典例1】(2023·全國(guó)·高三專題練習(xí))已知數(shù)列SKIPIF1<0中,SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】A【解析】由SKIPIF1<0得:SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0數(shù)列SKIPIF1<0是以SKIPIF1<0為首項(xiàng),SKIPIF1<0為公差的等差數(shù)列,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故選:A.【典例2】(2023·全國(guó)·高三專題練習(xí))在數(shù)列SKIPIF1<0中,已知SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的通項(xiàng)公式為.【答案】SKIPIF1<0【解析】由SKIPIF1<0,兩邊取倒數(shù)得SKIPIF1<0,即SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0是首項(xiàng)為SKIPIF1<0,公差為SKIPIF1<0的等差數(shù)列,所以SKIPIF1<0,故SKIPIF1<0.八、裂項(xiàng)相消法求數(shù)列的前n項(xiàng)和1、用裂項(xiàng)法求和的裂項(xiàng)原則及規(guī)律(1)裂項(xiàng)原則:一般是前邊裂幾項(xiàng),后邊就裂幾項(xiàng),直到發(fā)現(xiàn)被消去項(xiàng)的規(guī)律為止.(2)消項(xiàng)規(guī)律:消項(xiàng)后前邊剩幾項(xiàng),后邊就剩幾項(xiàng),前邊剩第幾項(xiàng),后邊就剩倒數(shù)第幾項(xiàng).【注意】利用裂項(xiàng)相消法求和時(shí),既要注意檢驗(yàn)通項(xiàng)公式裂項(xiàng)前后是否等價(jià),又要注意求和時(shí),正負(fù)項(xiàng)相消消去了哪些項(xiàng),保留了哪些項(xiàng),切不可漏寫(xiě)未被消去的項(xiàng).2、裂項(xiàng)相消法中常見(jiàn)的裂項(xiàng)技巧(1)(2)(3)(4)(5)(6)(7)【典例1】(2023·江西景德鎮(zhèn)·統(tǒng)考三模)在數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,則數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】D【解析】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故選:D.【典例2】(2023秋·寧夏石嘴山·高三校考階段練習(xí))數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0()A.97B.98C.99D.100【答案】C【解析】SKIPIF1<0,故SKIPIF1<0,解得SKIPIF1<0.故選:C【典例3】(2023·四川綿陽(yáng)·??寄M預(yù)測(cè))設(shè)數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,SKIPIF1<0.(1)求證數(shù)列SKIPIF1<0為等比數(shù)列,并求數(shù)列SKIPIF1<0的通項(xiàng)公式SKIPIF1<0.(2)若數(shù)列SKIPIF1<0的前m項(xiàng)和SKIPIF1<0,求m的值,【答案】(1)證明見(jiàn)解析,SKIPIF1<0;(2)7【解析】(1)因?yàn)镾KIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,解得SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,整理得SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,所以數(shù)列SKIPIF1<0是首項(xiàng)為2,公比為2的等比數(shù)列,所以SKIPIF1<0.所以SKIPIF1<0(2)SKIPIF1<0,數(shù)列SKIPIF1<0的前m項(xiàng)和SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,故m的值為7.九、錯(cuò)位相減法求數(shù)列的前n項(xiàng)和1、解題步驟2、注意解題“3關(guān)鍵”①要善于識(shí)別題目類(lèi)型,特別是等比數(shù)列公比為負(fù)數(shù)的情形.②在寫(xiě)出“Sn”與“qSn”的表達(dá)式時(shí)應(yīng)特別注意將兩式“錯(cuò)項(xiàng)對(duì)齊”以便下一步準(zhǔn)確寫(xiě)出“Sn-qSn”的表達(dá)式.③在應(yīng)用錯(cuò)位相減法求和時(shí),若等比數(shù)列的公比為參數(shù),應(yīng)分公比q=1和q≠1兩種情況求解.3、等差乘等比數(shù)列求和,令SKIPIF1<0,可以用錯(cuò)位相減法.SKIPIF1<0①SKIPIF1<0②SKIPIF1<0得:SKIPIF1<0.整理得:SKIPIF1<0.【典例1】(2023秋·福建三明·高三三明一中校考階段練習(xí))設(shè)SKIPIF1<0是首項(xiàng)為1的等比數(shù)列,數(shù)列SKIPIF1<0滿足SKIPIF1<0,已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列.(1)求SKIPIF1<0和SKIPIF1<0的通項(xiàng)公式;(2)記SKIPIF1<0和SKIPIF1<0分別為SKIPIF1<0和SKIPIF1<0的前n項(xiàng)和,求SKIPIF1<0和SKIPIF1<0.【答案】(1)SKIPIF1<0,SKIPIF1<0;(2)SKIPIF1<0,SKIPIF1<0.【解析】(1)設(shè)SKIPIF1<0的公比為q,則SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列,得SKIPIF1<0,則有SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0和SKIPIF1<0的通項(xiàng)公式是SKIPIF1<0,SKIPIF1<0.(2)由(1)知SKIPIF1<0;SKIPIF1<0,則SKIPIF1<0,兩式相減得SKIPIF1<0SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0.【典例2】(2023秋·河南鄭州·高三??茧A段練習(xí))記SKIPIF1<0為數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和,已知SKIPIF1<0.(1)求SKIPIF1<0的通項(xiàng)公式;(2)設(shè)SKIPIF1<0,求SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0【解析】(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;經(jīng)檢驗(yàn):SKIPIF1<0滿足上式,所以SKIPIF1<0的通項(xiàng)公式是SKIPIF1<0.(2)由(1)得,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.即SKIPIF1<0,即SKIPIF1<0.【典例3】(2023秋·湖南長(zhǎng)沙·高三??茧A段練習(xí))已知數(shù)列SKIPIF1<0滿足:SKIPIF1<0.(1)證明數(shù)列SKIPIF1<0是等比數(shù)列,并求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)若數(shù)列SKIPIF1<0滿足SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.【答案】(1)證明見(jiàn)解析,SKIPIF1<0;(2)SKIPIF1<0【解析】(1)由題意:SKIPIF1<0,且SKIPIF1<0,則數(shù)列SKIPIF1<0是以2為首項(xiàng),2為公比的等比數(shù)列,所以SKIPIF1<0.(2)由(1)可得:SKIPIF1<0,則SKIPIF1<0,兩邊同乘SKIPIF1<0得:SKIPIF1<0,作差得SKIPIF1<0,所以SKIPIF1<0.易錯(cuò)點(diǎn)1由SKIPIF1<0求SKIPIF1<0時(shí)忽略對(duì)“SKIPIF1<0”檢驗(yàn)點(diǎn)撥:在數(shù)列問(wèn)題中,數(shù)列的通項(xiàng)SKIPIF1<0與其前n項(xiàng)和SKIPIF1<0之間關(guān)系如下SKIPIF1<0,在使用這個(gè)關(guān)系式時(shí),要牢牢記住其分段的特點(diǎn)。當(dāng)題中給出數(shù)列{SKIPIF1<0}的SKIPIF1<0與SKIPIF1<0關(guān)系時(shí),先令SKIPIF1<0求出首項(xiàng)SKIPIF1<0,然后令SKIPIF1<0求出通項(xiàng)SKIPIF1<0,最后代入驗(yàn)證。解答此類(lèi)題常見(jiàn)錯(cuò)誤為直接令SKIPIF1<0求出通項(xiàng)SKIPIF1<0,也不對(duì)SKIPIF1<0進(jìn)行檢驗(yàn)?!镜淅?】(2023·全國(guó)·高三專題練習(xí))已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】C【解析】SKIPIF1<0令SKIPIF1<0可得:SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0SKIPIF1<0①,SKIPIF1<0②,由①-②可得:SKIPIF1<0,SKIPIF1<0SKIPIF1<0,故選:C【典例2】(2023·全國(guó)·高三專題練習(xí))已知數(shù)列SKIPIF1<0的前n項(xiàng)和SKIPIF1<0,則SKIPIF1<0.【答案】SKIPIF1<0【解析】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0不滿足上式.故SKIPIF1<0.故答案為:SKIPIF1<0.【典例3】(2022秋·全國(guó)·高三校聯(lián)考階段練習(xí))已知數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,且SKIPIF1<0,則數(shù)列SKIP

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論