版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
第08講函數(shù)的基本性質(zhì)Ⅱ-奇偶性、周期性和對稱性(精練)【A組
在基礎(chǔ)中考查功底】一、單選題1.(2023·北京通州·統(tǒng)考模擬預(yù)測)下列函數(shù)中,是奇函數(shù)且在定義域內(nèi)單調(diào)遞增的是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)冪函數(shù)、指數(shù)函數(shù)、正切函數(shù)的單調(diào)性及奇偶性逐一判斷即可.【詳解】對于A,函數(shù)SKIPIF1<0在SKIPIF1<0上遞減,故A不符題意;對于B,函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,關(guān)于原點對稱,因為SKIPIF1<0,所以函數(shù)為奇函數(shù),又函數(shù)在SKIPIF1<0單調(diào)遞增,故B符合題意;對于C,函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,關(guān)于原點對稱,因為SKIPIF1<0,所以函數(shù)為偶函數(shù),故C不符合題意;對于D,函數(shù)SKIPIF1<0,因為SKIPIF1<0,所以函數(shù)不是增函數(shù),故D不符題意.故選:B.2.(2023春·河南·高三校聯(lián)考階段練習(xí))已知SKIPIF1<0,函數(shù)SKIPIF1<0都滿足SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0(
)A.3 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】通過分析得SKIPIF1<0,則SKIPIF1<0.【詳解】根據(jù)題意,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,所以函數(shù)SKIPIF1<0的周期為6,所以SKIPIF1<0.故選:D.3.(2023·全國·模擬預(yù)測)函數(shù)SKIPIF1<0的大致圖象是(
)A. B.C. D.【答案】A【分析】首先判斷函數(shù)的奇偶性,再代入計算SKIPIF1<0和SKIPIF1<0的值即可得到正確答案.【詳解】因為SKIPIF1<0,且函數(shù)定義域為SKIPIF1<0,關(guān)于原點對稱,所以SKIPIF1<0是偶函數(shù),其圖象關(guān)于SKIPIF1<0軸對稱,排除C;SKIPIF1<0,排除B;SKIPIF1<0,排除D.故選:A.4.(2023·高三課時練習(xí))設(shè)SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),且SKIPIF1<0在SKIPIF1<0上是嚴格減函數(shù),SKIPIF1<0,則SKIPIF1<0的解集為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】由函數(shù)為偶函數(shù)可將不等式化為SKIPIF1<0,即可利用單調(diào)性求解.【詳解】SKIPIF1<0SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),SKIPIF1<0,則不等式SKIPIF1<0為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0SKIPIF1<0在SKIPIF1<0上是嚴格減函數(shù),SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,又定義域為SKIPIF1<0,故不等式的解集為SKIPIF1<0.故選:C.【點睛】本題考查利用偶函數(shù)的性質(zhì)解不等式,將不等式化為SKIPIF1<0利用單調(diào)性求解是解題的關(guān)鍵.5.(2023·浙江臺州·統(tǒng)考二模)已知函數(shù)SKIPIF1<0同時滿足性質(zhì):①SKIPIF1<0;②當(dāng)SKIPIF1<0時,SKIPIF1<0,則函數(shù)SKIPIF1<0可能為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】①SKIPIF1<0說明SKIPIF1<0為偶函數(shù),②SKIPIF1<0,說明函數(shù)在SKIPIF1<0上單調(diào)遞減,再逐項分析即可.【詳解】①SKIPIF1<0說明SKIPIF1<0為偶函數(shù),②SKIPIF1<0,說明函數(shù)在SKIPIF1<0上單調(diào)遞減.A不滿足②,B不滿足①,C不滿足②,因為SKIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0單調(diào)遞增.對于D,滿足①,當(dāng)SKIPIF1<0,單調(diào)遞減,也滿足②.故選:D.6.(2023·黑龍江大慶·鐵人中學(xué)校考二模)已知函數(shù)SKIPIF1<0,若SKIPIF1<0,則實數(shù)a的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】討論SKIPIF1<0與0、1的大小關(guān)系,寫出SKIPIF1<0的解析式,解出不等式后,再求并集即為答案.【詳解】因為SKIPIF1<0.①當(dāng)SKIPIF1<0時,SKIPIF1<0.②當(dāng)SKIPIF1<0時,SKIPIF1<0.③當(dāng)SKIPIF1<0時,SKIPIF1<0.綜上所述:SKIPIF1<0.故選:D.7.(2023春·江西·高三校聯(lián)考階段練習(xí))設(shè)函數(shù)SKIPIF1<0,則(
)A.SKIPIF1<0關(guān)于SKIPIF1<0對稱 B.SKIPIF1<0關(guān)于SKIPIF1<0對稱C.SKIPIF1<0關(guān)于SKIPIF1<0對稱 D.SKIPIF1<0關(guān)于SKIPIF1<0對稱【答案】D【分析】根據(jù)函數(shù)對稱性的性質(zhì)依次判斷選項即可得到答案.【詳解】對選項A,因為SKIPIF1<0,所以SKIPIF1<0不關(guān)于SKIPIF1<0對稱,故A錯誤.對選項B,因為SKIPIF1<0,所以SKIPIF1<0不關(guān)于SKIPIF1<0對稱,故B錯誤.對選項C,因為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0不關(guān)于SKIPIF1<0對稱,故C錯誤.對選項D,因為SKIPIF1<0,所以SKIPIF1<0關(guān)于SKIPIF1<0對稱,故D正確.故選:D8.(2023·青?!ばB?lián)考模擬預(yù)測)已知函數(shù)SKIPIF1<0為偶函數(shù),且函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則關(guān)于x的不等式SKIPIF1<0的解集為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】利用函數(shù)的奇偶性和對稱性,得到函數(shù)的單調(diào)區(qū)間,利用單調(diào)性解函數(shù)不等式.【詳解】因為SKIPIF1<0為偶函數(shù),所以SKIPIF1<0的圖像關(guān)于y軸對稱,則SKIPIF1<0的圖像關(guān)于直線SKIPIF1<0對稱.因為SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減.因為SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.故選:A.二、多選題9.(2023·全國·高三專題練習(xí))已知定義在SKIPIF1<0上的奇函數(shù)SKIPIF1<0的圖象連續(xù)不斷,且滿足SKIPIF1<0,則以下結(jié)論成立的是(
)A.函數(shù)SKIPIF1<0的周期SKIPIF1<0B.SKIPIF1<0C.點SKIPIF1<0是函數(shù)SKIPIF1<0圖象的一個對稱中心D.SKIPIF1<0在SKIPIF1<0上有4個零點【答案】ABC【分析】根據(jù)題意求得函數(shù)SKIPIF1<0的周期為SKIPIF1<0,結(jié)合函數(shù)的周期性和SKIPIF1<0,逐項判定,即可求解.【詳解】由定義在SKIPIF1<0上的奇函數(shù)SKIPIF1<0的圖象連續(xù)不斷,且滿足SKIPIF1<0,所以函數(shù)SKIPIF1<0的周期為SKIPIF1<0,所以A正確;由SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,且SKIPIF1<0,又由SKIPIF1<0,所以SKIPIF1<0,所以B正確;由SKIPIF1<0,可得點SKIPIF1<0是SKIPIF1<0圖象的一個對稱中心,所以C正確;由SKIPIF1<0在SKIPIF1<0上有SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上有5個零點,所以D錯誤.故選:ABC.10.(2023·全國·高三專題練習(xí))已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0滿足:SKIPIF1<0關(guān)于SKIPIF1<0中心對稱,SKIPIF1<0關(guān)于SKIPIF1<0對稱,且SKIPIF1<0.則下列選項中說法正確的有(
)A.SKIPIF1<0為奇函數(shù) B.SKIPIF1<0周期為2C.SKIPIF1<0 D.SKIPIF1<0是奇函數(shù)【答案】AD【分析】由于SKIPIF1<0的定義域為SKIPIF1<0,且關(guān)于SKIPIF1<0中心對稱,可知SKIPIF1<0是奇函數(shù),又SKIPIF1<0關(guān)于SKIPIF1<0對稱,由此即可求出函數(shù)的周期,根據(jù)函數(shù)的奇偶性及周期性判斷各項的正誤.【詳解】由于SKIPIF1<0的定義域為SKIPIF1<0,且關(guān)于SKIPIF1<0中心對稱,可得SKIPIF1<0是奇函數(shù),故A項正確;因為SKIPIF1<0關(guān)于直線SKIPIF1<0對稱,即SKIPIF1<0,所以SKIPIF1<0,所以函數(shù)SKIPIF1<0的周期SKIPIF1<0,故B項錯誤;SKIPIF1<0,故C項錯誤;SKIPIF1<0,所以SKIPIF1<0是奇函數(shù),故D項正確.故選:AD.三、填空題11.(2023秋·吉林長春·高三長春市第二中學(xué)??计谀┰O(shè)SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),且SKIPIF1<0,又當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0的值為______.【答案】1【分析】由已知可得函數(shù)的周期為4,然后根據(jù)函數(shù)解析式結(jié)合周期性奇偶性可求得結(jié)果.【詳解】因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0的周期為4,因為SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,故答案為:112.(2023·全國·高三對口高考)已知函數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是奇函數(shù),且當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0時,SKIPIF1<0________.【答案】SKIPIF1<0【分析】由奇函數(shù)性質(zhì)得SKIPIF1<0,再根據(jù)奇函數(shù)求解析式即可.【詳解】解:因為SKIPIF1<0為SKIPIF1<0上的奇函數(shù),當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.所以當(dāng)SKIPIF1<0時,SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0.所以SKIPIF1<0.所以SKIPIF1<0.所以,SKIPIF1<0時,SKIPIF1<0故答案為:SKIPIF1<013.(2023·全國·高三專題練習(xí))定義在SKIPIF1<0上的奇函數(shù)SKIPIF1<0滿足SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0的值為___________.【答案】SKIPIF1<0【分析】首先根據(jù)題意得到函數(shù)SKIPIF1<0是以4為周期的周期函數(shù),再結(jié)合奇函數(shù)的性質(zhì)和對數(shù)的運算性質(zhì)求解即可.【詳解】由題意,函數(shù)SKIPIF1<0滿足SKIPIF1<0,化簡可得SKIPIF1<0,所以函數(shù)SKIPIF1<0是以4為周期的周期函數(shù),因為SKIPIF1<0為奇函數(shù),所以SKIPIF1<0,因為SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<014.(2023·福建漳州·統(tǒng)考三模)已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),且SKIPIF1<0,則SKIPIF1<0_________.【答案】SKIPIF1<0/SKIPIF1<0【分析】根據(jù)奇函數(shù)的性質(zhì),結(jié)合題目中的函數(shù)解析式,可得答案.【詳解】由函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),則SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,則SKIPIF1<0.故答案為:SKIPIF1<0.15.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0,若不等式SKIPIF1<0在R上恒成立,則實數(shù)m的取值范圍是________.【答案】SKIPIF1<0.【分析】利用換元法把目標式轉(zhuǎn)化為二次函數(shù)問題,結(jié)合二次函數(shù)的單調(diào)性和最值情況可得答案.【詳解】令SKIPIF1<0因為SKIPIF1<0在區(qū)間SKIPIF1<0上是增函數(shù),所以SKIPIF1<0因此要使SKIPIF1<0在區(qū)間SKIPIF1<0上恒成立,應(yīng)有SKIPIF1<0,即所求實數(shù)m的取值范圍為SKIPIF1<0.故答案為:SKIPIF1<0.【B組
在綜合中考查能力】一、單選題1.(2023·寧夏石嘴山·平羅中學(xué)??寄M預(yù)測)如圖是下列四個函數(shù)中的某個函數(shù)在區(qū)間SKIPIF1<0上的大致圖象,則該函數(shù)是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)給定的函數(shù)圖象特征,利用函數(shù)的奇偶性排除BC;利用SKIPIF1<0的正負即可判斷作答.【詳解】對于B,SKIPIF1<0,SKIPIF1<0,函數(shù)SKIPIF1<0是偶函數(shù),B不是;對于C,SKIPIF1<0,SKIPIF1<0,函數(shù)SKIPIF1<0是偶函數(shù),C不是;對于D,SKIPIF1<0,SKIPIF1<0,D不是;對于A,SKIPIF1<0,SKIPIF1<0,函數(shù)SKIPIF1<0是奇函數(shù),且SKIPIF1<0,A符合題意.故選:A2.(2023·上海寶山·統(tǒng)考二模)已知定義在SKIPIF1<0上的偶函數(shù)SKIPIF1<0,若正實數(shù)a、b滿足SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.9 C.SKIPIF1<0 D.8【答案】A【分析】根據(jù)偶函數(shù)的對稱性可得SKIPIF1<0,由題意分析可得SKIPIF1<0,結(jié)合基本不等式分析運算.【詳解】若函數(shù)SKIPIF1<0為偶函數(shù),則SKIPIF1<0,即SKIPIF1<0,可得SKIPIF1<0,整理得SKIPIF1<0,故SKIPIF1<0,解得SKIPIF1<0,∴SKIPIF1<0.若正實數(shù)a、b滿足SKIPIF1<0,即SKIPIF1<0,可得SKIPIF1<0,可得SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時,等號成立,∴SKIPIF1<0的最小值為SKIPIF1<0.故選:A.3.(2023·廣東廣州·統(tǒng)考二模)已知偶函數(shù)SKIPIF1<0與其導(dǎo)函數(shù)SKIPIF1<0的定義域均為SKIPIF1<0,且SKIPIF1<0也是偶函數(shù),若SKIPIF1<0,則實數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】由偶函數(shù)的定義結(jié)合導(dǎo)數(shù)可得出SKIPIF1<0,由已知可得出SKIPIF1<0,可求出SKIPIF1<0的表達式,利用導(dǎo)數(shù)分析函數(shù)SKIPIF1<0的單調(diào)性,可知函數(shù)SKIPIF1<0在SKIPIF1<0上為增函數(shù),再由SKIPIF1<0可得出SKIPIF1<0,可得出關(guān)于實數(shù)SKIPIF1<0的不等式,解之即可.【詳解】因為SKIPIF1<0為偶函數(shù),則SKIPIF1<0,等式兩邊求導(dǎo)可得SKIPIF1<0,①因為函數(shù)SKIPIF1<0為偶函數(shù),則SKIPIF1<0,②聯(lián)立①②可得SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,且SKIPIF1<0不恒為零,所以,函數(shù)SKIPIF1<0在SKIPIF1<0上為增函數(shù),即函數(shù)SKIPIF1<0在SKIPIF1<0上為增函數(shù),故當(dāng)SKIPIF1<0時,SKIPIF1<0,所以,函數(shù)SKIPIF1<0在SKIPIF1<0上為增函數(shù),由SKIPIF1<0可得SKIPIF1<0,所以,SKIPIF1<0,整理可得SKIPIF1<0,解得SKIPIF1<0.故選:B.4.(2023·全國·模擬預(yù)測)已知函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是偶函數(shù),SKIPIF1<0,則SKIPIF1<0(
)A.0 B.1 C.-1 D.2【答案】B【分析】由函數(shù)的奇偶對稱性推得SKIPIF1<0是周期為4的函數(shù),并求得SKIPIF1<0,最后利用周期性求目標函數(shù)值.【詳解】由SKIPIF1<0是偶函數(shù),SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0是周期函數(shù),周期為4,對于SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0.故選:B5.(2023·新疆喀什·統(tǒng)考模擬預(yù)測)已知函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,滿足SKIPIF1<0為奇函數(shù)且SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0若SKIPIF1<0則SKIPIF1<0(
)A.10 B.-10 C.SKIPIF1<0 D.-SKIPIF1<0【答案】A【分析】根據(jù)函數(shù)SKIPIF1<0的奇偶性與對稱性得函數(shù)的周期,再根據(jù)已知區(qū)間內(nèi)的解析式求得SKIPIF1<0的值,最后利用周期性即可求得SKIPIF1<0的值.【詳解】由SKIPIF1<0為奇函數(shù)可得:SKIPIF1<0,即SKIPIF1<0①,則SKIPIF1<0關(guān)于點SKIPIF1<0對稱,令SKIPIF1<0,則SKIPIF1<0;由SKIPIF1<0②,得SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對稱;由①②可得:SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,所以函數(shù)SKIPIF1<0的周期SKIPIF1<0;所以SKIPIF1<0,即SKIPIF1<0,聯(lián)立SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0.所以SKIPIF1<0.故選:A.二、多選題6.(2023·山東菏澤·山東省東明縣第一中學(xué)校聯(lián)考模擬預(yù)測)已知函數(shù)SKIPIF1<0的定義域為R,SKIPIF1<0為奇函數(shù),且對SKIPIF1<0,SKIPIF1<0恒成立,則(
)A.SKIPIF1<0為奇函數(shù) B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】BCD【分析】根據(jù)函數(shù)定義換算可得SKIPIF1<0為偶函數(shù),根據(jù)偶函數(shù)和奇函數(shù)性質(zhì)可知SKIPIF1<0為周期函數(shù),再根據(jù)函數(shù)周期性和函數(shù)特殊值即可得出選項.【詳解】因為SKIPIF1<0為奇函數(shù),所以SKIPIF1<0,故SKIPIF1<0又SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0為偶函數(shù),A錯誤;SKIPIF1<0為奇函數(shù),所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,B正確;SKIPIF1<0,又SKIPIF1<0的圖象關(guān)于點SKIPIF1<0對稱,所以SKIPIF1<0,所以SKIPIF1<0,C正確;又SKIPIF1<0,所以SKIPIF1<0是以4為周期的函數(shù),SKIPIF1<0,D正確.故選:BCD.7.(2023·江蘇·統(tǒng)考三模)已知函數(shù)SKIPIF1<0及其導(dǎo)函數(shù)SKIPIF1<0的定義域均為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,且當(dāng)SKIPIF1<0時,SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】BC【分析】本題根據(jù)函數(shù)對稱性,周期性與導(dǎo)數(shù)與單調(diào)性相關(guān)知識可得結(jié)果.【詳解】因SKIPIF1<0,則SKIPIF1<0關(guān)于SKIPIF1<0對稱,又因SKIPIF1<0,則SKIPIF1<0關(guān)于SKIPIF1<0對稱,所以SKIPIF1<0的周期為4,A:因SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,∴SKIPIF1<0,故A錯.B:當(dāng)SKIPIF1<0時SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0,SKIPIF1<0,因SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,故B正確.C:SKIPIF1<0關(guān)于SKIPIF1<0對稱且關(guān)于SKIPIF1<0對稱,所以SKIPIF1<0關(guān)于SKIPIF1<0對稱,即SKIPIF1<0為奇函數(shù),SKIPIF1<0為偶函數(shù),故C正確.D:因SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0關(guān)于SKIPIF1<0對稱,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,因SKIPIF1<0的周期為4,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,D錯誤.故選:BC.三、填空題8.(2023春·上海虹口·高三統(tǒng)考期中)對于定義在SKIPIF1<0上的奇函數(shù)SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,則該函數(shù)的值域為________.【答案】SKIPIF1<0【分析】根據(jù)奇函數(shù)的性質(zhì)求得SKIPIF1<0,再結(jié)合基本不等式求SKIPIF1<0時其SKIPIF1<0的取值范圍,再結(jié)合奇函數(shù)的性質(zhì)求SKIPIF1<0時函數(shù)值的范圍,由此可得函數(shù)值域.【詳解】因為SKIPIF1<0為SKIPIF1<0上的奇函數(shù),所以SKIPIF1<0,所以SKIPIF1<0,又當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時等號成立,即當(dāng)SKIPIF1<0時,SKIPIF1<0,因為SKIPIF1<0為SKIPIF1<0上的奇函數(shù),所以函數(shù)SKIPIF1<0的圖象關(guān)于原點對稱,所以SKIPIF1<0時,SKIPIF1<0,所以函數(shù)SKIPIF1<0的值域為SKIPIF1<0.故答案為:SKIPIF1<0.9.(2023·吉林通化·梅河口市第五中學(xué)??寄M預(yù)測)某函數(shù)SKIPIF1<0滿足以下三個條件:①SKIPIF1<0是偶函數(shù);②SKIPIF1<0;③SKIPIF1<0的最大值為4.請寫出一個滿足上述條件的函數(shù)SKIPIF1<0的解析式______.【答案】SKIPIF1<0(答案不唯一)【分析】根據(jù)所給條件分析函數(shù)的性質(zhì),結(jié)合所學(xué)函數(shù)可得.【詳解】因為SKIPIF1<0是偶函數(shù),所以SKIPIF1<0的圖象關(guān)于y軸對稱,因為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0所以SKIPIF1<0的圖象關(guān)于點SKIPIF1<0對稱,所以4為SKIPIF1<0的一個周期,又SKIPIF1<0的最大值為4,所以SKIPIF1<0滿足條件.故答案為:SKIPIF1<0(答案不唯一)10.(2023·陜西咸陽·統(tǒng)考三模)已知SKIPIF1<0是定義在R上的偶函數(shù),當(dāng)SKIPIF1<0時,SKIPIF1<0,則不等式SKIPIF1<0的解集是________.【答案】SKIPIF1<0【分析】利用導(dǎo)數(shù)判斷當(dāng)SKIPIF1<0時,SKIPIF1<0的單調(diào)性,結(jié)合偶函數(shù)解不等式.【詳解】當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,因為SKIPIF1<0是定義在R上的偶函數(shù),則SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,若SKIPIF1<0,即SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0,所以不等式SKIPIF1<0的解集是SKIPIF1<0.故答案為:SKIPIF1<0.11.(2023·全國·高三專題練習(xí))若SKIPIF1<0為定義在SKIPIF1<0上的連續(xù)不斷的函數(shù),滿足SKIPIF1<0,且當(dāng)SKIPIF1<0時,SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0的取值范圍___________.【答案】SKIPIF1<0【分析】構(gòu)造函數(shù)SKIPIF1<0,可得SKIPIF1<0為奇函數(shù),再利用導(dǎo)數(shù)判斷函數(shù)SKIPIF1<0的單調(diào)性,再根據(jù)函數(shù)的奇偶性和單調(diào)性即可求解.【詳解】由SKIPIF1<0,得SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0為奇函數(shù),又SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上是減函數(shù),從而在SKIPIF1<0上是減函數(shù),則SKIPIF1<0,等價于SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的取值范圍為SKIPIF1<0.故答案為:SKIPIF1<0.四、解答題12.(2023·河北·高三學(xué)業(yè)考試)已知二次函數(shù)SKIPIF1<0滿足SKIPIF1<0且SKIPIF1<0.(1)求SKIPIF1<0的解析式;(2)若方程SKIPIF1<0,SKIPIF1<0時有唯一一個零點,且不是重根,求SKIPIF1<0的取值范圍;(3)當(dāng)SKIPIF1<0時,不等式SKIPIF1<0恒成立,求實數(shù)SKIPIF1<0的范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(3)SKIPIF1<0【分析】(1)設(shè)SKIPIF1<0,SKIPIF1<0,得到SKIPIF1<0,代入函數(shù)計算得到SKIPIF1<0,得到解析式.(2)令SKIPIF1<0,只需SKIPIF1<0,解不等式并驗證得到答案.(3)設(shè)SKIPIF1<0,確定函數(shù)的單調(diào)性,計算最值得到答案.【詳解】(1)設(shè)SKIPIF1<0,則由SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0的解析式為SKIPIF1<0.(2)令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0在SKIPIF1<0上有唯一零點且不是重根,只需SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,經(jīng)檢驗SKIPIF1<0時,方程SKIPIF1<0在SKIPIF1<0上有唯一解SKIPIF1<0;SKIPIF1<0時,方程SKIPIF1<0在SKIPIF1<0上有唯一解SKIPIF1<0,故實數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.(3)SKIPIF1<0在SKIPIF1<0上恒成立,即SKIPIF1<0在SKIPIF1<0上恒成立.設(shè)SKIPIF1<0,其圖象的對稱軸為直線SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減.故只需SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0【C組
在創(chuàng)新中考查思維】一、單選題1.(2023·遼寧·校聯(lián)考二模)設(shè)函數(shù)SKIPIF1<0在SKIPIF1<0上滿足SKIPIF1<0,SKIPIF1<0,且在閉區(qū)間SKIPIF1<0上只有SKIPIF1<0,則方程SKIPIF1<0在閉區(qū)間SKIPIF1<0上的根的個數(shù)(
).A.1348 B.1347 C.1346 D.1345【答案】B【分析】根據(jù)周期函數(shù)性質(zhì)可知,只需求出一個周期里的根的個數(shù),可求得SKIPIF1<0在SKIPIF1<0上的零點個數(shù),再分區(qū)間SKIPIF1<0和SKIPIF1<0討論即可.【詳解】SKIPIF1<0在SKIPIF1<0上滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0關(guān)于直線SKIPIF1<0和直線SKIPIF1<0對稱,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0的周期為6,又在閉區(qū)間SKIPIF1<0上只有SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,且當(dāng)SKIPIF1<0時,通過其關(guān)于直線SKIPIF1<0對稱,得其SKIPIF1<0值對應(yīng)著SKIPIF1<0的SKIPIF1<0值,則SKIPIF1<0在閉區(qū)間SKIPIF1<0上只有SKIPIF1<0,同理可推得SKIPIF1<0在SKIPIF1<0也只有兩個零點,因為SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0共有SKIPIF1<0個零點,因為SKIPIF1<0,且在SKIPIF1<0的圖象與SKIPIF1<0的圖象相同,則SKIPIF1<0在SKIPIF1<0上有SKIPIF1<0個零點,則方程SKIPIF1<0在閉區(qū)間SKIPIF1<0上的根的個數(shù)為1347個.故選:B.【點睛】思路點睛:利用零點存在性定理不僅要函數(shù)在區(qū)間[a,b]上是連續(xù)不斷的曲線,且f(a)·f(b)<0,還必須結(jié)合函數(shù)的圖象與性質(zhì)(如單調(diào)性、奇偶性)才能確定函數(shù)有多少個零點.2.(2023·新疆·統(tǒng)考二模)設(shè)SKIPIF1<0是定義在R上的以2為周期的偶函數(shù),在區(qū)間SKIPIF1<0上單調(diào)遞減,且滿足SKIPIF1<0,SKIPIF1<0,則不等式組SKIPIF1<0的解集為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)題意,由函數(shù)的周期性與奇偶性分析可得SKIPIF1<0,則函數(shù)SKIPIF1<0關(guān)于直線SKIPIF1<0對稱,據(jù)此可得SKIPIF1<0在SKIPIF1<0上遞增,且SKIPIF1<0,SKIPIF1<0,則進而分析SKIPIF1<0可得答案.【詳解】根據(jù)題意,SKIPIF1<0為周期為2的偶函數(shù),則SKIPIF1<0且SKIPIF1<0,則有SKIPIF1<0,則函數(shù)SKIPIF1<0關(guān)于直線SKIPIF1<0對稱,又由SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,且SKIPIF1<0,SKIPIF1<0,因為周期為2得SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0關(guān)于直線SKIPIF1<0對稱,則SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上遞增,且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,即不等式組的解集為SKIPIF1<0.故選:D.3.(2023·海南·??谑协偵饺A僑中學(xué)校聯(lián)考模擬預(yù)測)設(shè)偶函數(shù)SKIPIF1<0在SKIPIF1<0上的導(dǎo)函數(shù)為SKIPIF1<0,當(dāng)SKIPIF1<0時,有SKIPIF1<0,則下列結(jié)論一定正確的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】將SKIPIF1<0變形為SKIPIF1<0,從而可構(gòu)造函數(shù)SKIPIF1<0,判斷其單調(diào)性以及奇偶性,由此代入數(shù)值,一一判斷各選項,即可得答案.【詳解】當(dāng)SKIPIF1<0時,有SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0為偶函數(shù),則SKIPIF1<0,即SKIPIF1<0為偶函數(shù),故SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,故A錯誤,C正確;由SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,B錯誤;而SKIPIF1<0,故SKIPIF1<0,則SKIPIF1<0不一定成立,D錯誤,故選:C【點睛】關(guān)鍵點睛:解答本題的關(guān)鍵在于要能根據(jù)已知不等式的結(jié)構(gòu)特征,進行變形,從而構(gòu)造出函數(shù)SKIPIF1<0,進而判斷其單調(diào)性,即可解決問題.二、多選題4.(2023·江蘇·統(tǒng)考二模)已知函數(shù)SKIPIF1<0,則(
)A.SKIPIF1<0是偶函數(shù),也是周期函數(shù) B.SKIPIF1<0的最大值為SKIPIF1<0C.SKIPIF1<0的圖像關(guān)于直線SKIPIF1<0對稱 D.SKIPIF1<0在SKIPIF1<0上單調(diào)遞增【答案】BD【分析】根據(jù)奇偶函數(shù)的定義即可判斷A,求導(dǎo)得到SKIPIF1<0,從而得到其極值,即可判斷B,根據(jù)對稱性的定義即可判斷C,由SKIPIF1<0在SKIPIF1<0的正負性即可判斷D.【詳解】因為SKIPIF1<0,定義域為SKIPIF1<0,關(guān)于原點對稱,且SKIPIF1<0,則SKIPIF1<0是奇函數(shù),故A錯誤;因為SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0時,SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞減,所以SKIPIF1<0,故B正確;因為SKIPIF1<0,SKIPIF1<0,所以不關(guān)于SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 智慧農(nóng)業(yè)創(chuàng)新趨勢及投資前景展望
- 2025至2030年中國玻璃鋼安全帽數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國異噻唑膦酮數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國四正丁基碘化銨數(shù)據(jù)監(jiān)測研究報告
- 2025年中國圓盤式日相儀市場調(diào)查研究報告
- 2025年中國仙居碧綠有機茶市場調(diào)查研究報告
- 2025至2031年中國鋼絲刷木柄行業(yè)投資前景及策略咨詢研究報告
- 2025至2031年中國活動帶砧式桌虎鉗行業(yè)投資前景及策略咨詢研究報告
- 2025至2030年中國洗劑水?dāng)?shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國雙轉(zhuǎn)子反擊式破碎機數(shù)據(jù)監(jiān)測研究報告
- 2024年臨床醫(yī)師定期考核試題中醫(yī)知識題庫及答案(共330題) (二)
- 2025-2030年中國反滲透膜行業(yè)市場發(fā)展趨勢展望與投資策略分析報告
- 湖北省十堰市城區(qū)2024-2025學(xué)年九年級上學(xué)期期末質(zhì)量檢測道德與法治試題 (含答案)
- 山東省濰坊市2024-2025學(xué)年高三上學(xué)期1月期末 英語試題
- 春節(jié)節(jié)后收心會
- 《榜樣9》觀后感心得體會四
- 七年級下冊英語單詞表(人教版)-418個
- 2025年山東省濟寧高新區(qū)管委會“優(yōu)才”招聘20人歷年高頻重點提升(共500題)附帶答案詳解
- 交警安全進校園課件
- (2024年高考真題)2024年普通高等學(xué)校招生全國統(tǒng)一考試數(shù)學(xué)試卷-新課標Ⅰ卷(含部分解析)
- HCIA-AI H13-311 v3.5認證考試題庫(含答案)
評論
0/150
提交評論