2022-2023學(xué)年浙江省高中發(fā)展共同體數(shù)學(xué)高三第一學(xué)期期末經(jīng)典試題含解析_第1頁(yè)
2022-2023學(xué)年浙江省高中發(fā)展共同體數(shù)學(xué)高三第一學(xué)期期末經(jīng)典試題含解析_第2頁(yè)
2022-2023學(xué)年浙江省高中發(fā)展共同體數(shù)學(xué)高三第一學(xué)期期末經(jīng)典試題含解析_第3頁(yè)
2022-2023學(xué)年浙江省高中發(fā)展共同體數(shù)學(xué)高三第一學(xué)期期末經(jīng)典試題含解析_第4頁(yè)
2022-2023學(xué)年浙江省高中發(fā)展共同體數(shù)學(xué)高三第一學(xué)期期末經(jīng)典試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.將函數(shù)的圖像向左平移個(gè)單位得到函數(shù)的圖像,則的最小值為()A. B. C. D.2.已知命題:使成立.則為()A.均成立 B.均成立C.使成立 D.使成立3.在平行四邊形中,若則()A. B. C. D.4.某四棱錐的三視圖如圖所示,記S為此棱錐所有棱的長(zhǎng)度的集合,則()A.B.C.D.5.函數(shù)在的圖像大致為A. B. C. D.6.設(shè),是方程的兩個(gè)不等實(shí)數(shù)根,記().下列兩個(gè)命題()①數(shù)列的任意一項(xiàng)都是正整數(shù);②數(shù)列存在某一項(xiàng)是5的倍數(shù).A.①正確,②錯(cuò)誤 B.①錯(cuò)誤,②正確C.①②都正確 D.①②都錯(cuò)誤7.已知數(shù)列滿足,且成等比數(shù)列.若的前n項(xiàng)和為,則的最小值為()A. B. C. D.8.已知直線過(guò)圓的圓心,則的最小值為()A.1 B.2 C.3 D.49.音樂(lè),是用聲音來(lái)展現(xiàn)美,給人以聽覺(jué)上的享受,熔鑄人們的美學(xué)趣味.著名數(shù)學(xué)家傅立葉研究了樂(lè)聲的本質(zhì),他證明了所有的樂(lè)聲都能用數(shù)學(xué)表達(dá)式來(lái)描述,它們是一些形如的簡(jiǎn)單正弦函數(shù)的和,其中頻率最低的一項(xiàng)是基本音,其余的為泛音.由樂(lè)聲的數(shù)學(xué)表達(dá)式可知,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波.下列函數(shù)中不能與函數(shù)構(gòu)成樂(lè)音的是()A. B. C. D.10.定義在上的奇函數(shù)滿足,若,,則()A. B.0 C.1 D.211.等比數(shù)列若則()A.±6 B.6 C.-6 D.12.《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(2017版)》提出了數(shù)學(xué)學(xué)科的六大核心素養(yǎng).為了比較甲、乙兩名高二學(xué)生的數(shù)學(xué)核心素養(yǎng)水平,現(xiàn)以六大素養(yǎng)為指標(biāo)對(duì)二人進(jìn)行了測(cè)驗(yàn),根據(jù)測(cè)驗(yàn)結(jié)果繪制了雷達(dá)圖(如圖,每項(xiàng)指標(biāo)值滿分為5分,分值高者為優(yōu)),則下面敘述正確的是()A.甲的數(shù)據(jù)分析素養(yǎng)高于乙B.甲的數(shù)學(xué)建模素養(yǎng)優(yōu)于數(shù)學(xué)抽象素養(yǎng)C.乙的六大素養(yǎng)中邏輯推理最差D.乙的六大素養(yǎng)整體平均水平優(yōu)于甲二、填空題:本題共4小題,每小題5分,共20分。13.拋物線的焦點(diǎn)到準(zhǔn)線的距離為.14.在平面直角坐標(biāo)系中,圓.已知過(guò)原點(diǎn)且相互垂直的兩條直線和,其中與圓相交于,兩點(diǎn),與圓相切于點(diǎn).若,則直線的斜率為_____________.15.已知函數(shù),若的最小值為,則實(shí)數(shù)的取值范圍是_________16.已知函數(shù)的圖象在處的切線斜率為,則______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)數(shù)列滿足,.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.18.(12分)市民小張計(jì)劃貸款60萬(wàn)元用于購(gòu)買一套商品住房,銀行給小張?zhí)峁┝藘煞N貸款方式.①等額本金:每月的還款額呈遞減趨勢(shì),且從第二個(gè)還款月開始,每月還款額與上月還款額的差均相同;②等額本息:每個(gè)月的還款額均相同.銀行規(guī)定,在貸款到賬日的次月當(dāng)天開始首次還款(若2019年7月7日貸款到賬,則2019年8月7日首次還款).已知小張?jiān)摴P貸款年限為20年,月利率為0.004.(1)若小張采取等額本金的還款方式,現(xiàn)已得知第一個(gè)還款月應(yīng)還4900元,最后一個(gè)還款月應(yīng)還2510元,試計(jì)算小張?jiān)摴P貸款的總利息;(2)若小張采取等額本息的還款方式,銀行規(guī)定,每月還款額不得超過(guò)家庭平均月收入的一半,已知小張家庭平均月收入為1萬(wàn)元,判斷小張?jiān)摴P貸款是否能夠獲批(不考慮其他因素);(3)對(duì)比兩種還款方式,從經(jīng)濟(jì)利益的角度來(lái)考慮,小張應(yīng)選擇哪種還款方式.參考數(shù)據(jù):.19.(12分)已知在等比數(shù)列中,.(1)求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列前項(xiàng)的和.20.(12分)已知,其中.(1)當(dāng)時(shí),設(shè)函數(shù),求函數(shù)的極值.(2)若函數(shù)在區(qū)間上遞增,求的取值范圍;(3)證明:.21.(12分)如圖,在四棱錐中,,,,和均為邊長(zhǎng)為的等邊三角形.(1)求證:平面平面;(2)求二面角的余弦值.22.(10分)若正數(shù)滿足,求的最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

根據(jù)三角函數(shù)的平移求出函數(shù)的解析式,結(jié)合三角函數(shù)的性質(zhì)進(jìn)行求解即可.【詳解】將函數(shù)的圖象向左平移個(gè)單位,得到,此時(shí)與函數(shù)的圖象重合,則,即,,當(dāng)時(shí),取得最小值為,故選:.【點(diǎn)睛】本題主要考查三角函數(shù)的圖象和性質(zhì),利用三角函數(shù)的平移關(guān)系求出解析式是解決本題的關(guān)鍵.2、A【解析】試題分析:原命題為特稱命題,故其否定為全稱命題,即.考點(diǎn):全稱命題.3、C【解析】

由,,利用平面向量的數(shù)量積運(yùn)算,先求得利用平行四邊形的性質(zhì)可得結(jié)果.【詳解】如圖所示,

平行四邊形中,,

,,,

因?yàn)?

所以

,

,所以,故選C.【點(diǎn)睛】本題主要考查向量的幾何運(yùn)算以及平面向量數(shù)量積的運(yùn)算法則,屬于中檔題.向量的運(yùn)算有兩種方法:(1)平行四邊形法則(平行四邊形的對(duì)角線分別是兩向量的和與差);(2)三角形法則(兩箭頭間向量是差,箭頭與箭尾間向量是和).4、D【解析】

如圖所示:在邊長(zhǎng)為的正方體中,四棱錐滿足條件,故,得到答案.【詳解】如圖所示:在邊長(zhǎng)為的正方體中,四棱錐滿足條件.故,,.故,故,.故選:.【點(diǎn)睛】本題考查了三視圖,元素和集合的關(guān)系,意在考查學(xué)生的空間想象能力和計(jì)算能力.5、B【解析】

由分子、分母的奇偶性,易于確定函數(shù)為奇函數(shù),由的近似值即可得出結(jié)果.【詳解】設(shè),則,所以是奇函數(shù),圖象關(guān)于原點(diǎn)成中心對(duì)稱,排除選項(xiàng)C.又排除選項(xiàng)D;,排除選項(xiàng)A,故選B.【點(diǎn)睛】本題通過(guò)判斷函數(shù)的奇偶性,縮小考察范圍,通過(guò)計(jì)算特殊函數(shù)值,最后做出選擇.本題較易,注重了基礎(chǔ)知識(shí)、基本計(jì)算能力的考查.6、A【解析】

利用韋達(dá)定理可得,,結(jié)合可推出,再計(jì)算出,,從而推出①正確;再利用遞推公式依次計(jì)算數(shù)列中的各項(xiàng),以此判斷②的正誤.【詳解】因?yàn)?是方程的兩個(gè)不等實(shí)數(shù)根,所以,,因?yàn)?所以,即當(dāng)時(shí),數(shù)列中的任一項(xiàng)都等于其前兩項(xiàng)之和,又,,所以,,,以此類推,即可知數(shù)列的任意一項(xiàng)都是正整數(shù),故①正確;若數(shù)列存在某一項(xiàng)是5的倍數(shù),則此項(xiàng)個(gè)位數(shù)字應(yīng)當(dāng)為0或5,由,,依次計(jì)算可知,數(shù)列中各項(xiàng)的個(gè)位數(shù)字以1,3,4,7,1,8,9,7,6,3,9,2為周期,故數(shù)列中不存在個(gè)位數(shù)字為0或5的項(xiàng),故②錯(cuò)誤;故選:A.【點(diǎn)睛】本題主要考查數(shù)列遞推公式的推導(dǎo),考查數(shù)列性質(zhì)的應(yīng)用,考查學(xué)生的綜合分析以及計(jì)算能力.7、D【解析】

利用等比中項(xiàng)性質(zhì)可得等差數(shù)列的首項(xiàng),進(jìn)而求得,再利用二次函數(shù)的性質(zhì),可得當(dāng)或時(shí),取到最小值.【詳解】根據(jù)題意,可知為等差數(shù)列,公差,由成等比數(shù)列,可得,∴,解得.∴.根據(jù)單調(diào)性,可知當(dāng)或時(shí),取到最小值,最小值為.故選:D.【點(diǎn)睛】本題考查等差數(shù)列通項(xiàng)公式、等比中項(xiàng)性質(zhì)、等差數(shù)列前項(xiàng)和的最值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意當(dāng)或時(shí)同時(shí)取到最值.8、D【解析】

圓心坐標(biāo)為,代入直線方程,再由乘1法和基本不等式,展開計(jì)算即可得到所求最小值.【詳解】圓的圓心為,由題意可得,即,,,則,當(dāng)且僅當(dāng)且即時(shí)取等號(hào),故選:.【點(diǎn)睛】本題考查最值的求法,注意運(yùn)用乘1法和基本不等式,注意滿足的條件:一正二定三等,同時(shí)考查直線與圓的關(guān)系,考查運(yùn)算能力,屬于基礎(chǔ)題.9、C【解析】

由基本音的諧波的定義可得,利用可得,即可判斷選項(xiàng).【詳解】由題,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波,由,可知若,則必有,故選:C【點(diǎn)睛】本題考查三角函數(shù)的周期與頻率,考查理解分析能力.10、C【解析】

首先判斷出是周期為的周期函數(shù),由此求得所求表達(dá)式的值.【詳解】由已知為奇函數(shù),得,而,所以,所以,即的周期為.由于,,,所以,,,.所以,又,所以.故選:C【點(diǎn)睛】本小題主要考查函數(shù)的奇偶性和周期性,屬于基礎(chǔ)題.11、B【解析】

根據(jù)等比中項(xiàng)性質(zhì)代入可得解,由等比數(shù)列項(xiàng)的性質(zhì)確定值即可.【詳解】由等比數(shù)列中等比中項(xiàng)性質(zhì)可知,,所以,而由等比數(shù)列性質(zhì)可知奇數(shù)項(xiàng)符號(hào)相同,所以,故選:B.【點(diǎn)睛】本題考查了等比數(shù)列中等比中項(xiàng)的簡(jiǎn)單應(yīng)用,注意項(xiàng)的符號(hào)特征,屬于基礎(chǔ)題.12、D【解析】

根據(jù)雷達(dá)圖對(duì)選項(xiàng)逐一分析,由此確定敘述正確的選項(xiàng).【詳解】對(duì)于A選項(xiàng),甲的數(shù)據(jù)分析分,乙的數(shù)據(jù)分析分,甲低于乙,故A選項(xiàng)錯(cuò)誤.對(duì)于B選項(xiàng),甲的建模素養(yǎng)分,乙的建模素養(yǎng)分,甲低于乙,故B選項(xiàng)錯(cuò)誤.對(duì)于C選項(xiàng),乙的六大素養(yǎng)中,邏輯推理分,不是最差,故C選項(xiàng)錯(cuò)誤.對(duì)于D選項(xiàng),甲的總得分分,乙的總得分分,所以乙的六大素養(yǎng)整體平均水平優(yōu)于甲,故D選項(xiàng)正確.故選:D【點(diǎn)睛】本小題主要考查圖表分析和數(shù)據(jù)處理,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】試題分析:由題意得,因?yàn)閽佄锞€,即,即焦點(diǎn)到準(zhǔn)線的距離為.考點(diǎn):拋物線的性質(zhì).14、【解析】

設(shè):,:,利用點(diǎn)到直線的距離,列出式子,求出的值即可.【詳解】解:由圓,可知圓心,半徑為.設(shè)直線:,則:,圓心到直線的距離為,,.圓心到直線的距離為半徑,即,并根據(jù)垂徑定理的應(yīng)用,可列式得到,解得.故答案為:.【點(diǎn)睛】本題主要考查點(diǎn)到直線的距離公式的運(yùn)用,并結(jié)合圓的方程,垂徑定理的基本知識(shí),屬于中檔題.15、【解析】

,可得在時(shí),最小值為,時(shí),要使得最小值為,則對(duì)稱軸在1的右邊,且,求解出即滿足最小值為.【詳解】當(dāng),,當(dāng)且僅當(dāng)時(shí),等號(hào)成立.當(dāng)時(shí),為二次函數(shù),要想在處取最小,則對(duì)稱軸要滿足并且,即,解得.【點(diǎn)睛】本題考查分段函數(shù)的最值問(wèn)題,對(duì)每段函數(shù)先進(jìn)行分類討論,找到每段的最小值,然后再對(duì)兩段函數(shù)的最小值進(jìn)行比較,得到結(jié)果,題目較綜合,屬于中檔題.16、【解析】

先對(duì)函數(shù)f(x)求導(dǎo),再根據(jù)圖象在(0,f(0))處切線的斜率為﹣4,得f′(0)=﹣4,由此可求a的值.【詳解】由函數(shù)得,∵函數(shù)f(x)的圖象在(0,f(0))處切線的斜率為﹣4,,.故答案為4【點(diǎn)睛】本題考查了根據(jù)曲線上在某點(diǎn)切線方程的斜率求參數(shù)的問(wèn)題,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解析】

(1)令可求得的值,令時(shí),由可得出,兩式相減可得的表達(dá)式,然后對(duì)是否滿足在時(shí)的表達(dá)式進(jìn)行檢驗(yàn),由此可得出數(shù)列的通項(xiàng)公式;(2)求出數(shù)列的通項(xiàng)公式,對(duì)分奇數(shù)和偶數(shù)兩種情況討論,利用奇偶分組求和法結(jié)合等差數(shù)列和等比數(shù)列的求和公式可求得結(jié)果.【詳解】(1),當(dāng)時(shí),;當(dāng)時(shí),由得,兩式相減得,.滿足.因此,數(shù)列的通項(xiàng)公式為;(2).①當(dāng)為奇數(shù)時(shí),;②當(dāng)為偶數(shù)時(shí),.綜上所述,.【點(diǎn)睛】本題考查數(shù)列通項(xiàng)的求解,同時(shí)也考查了奇偶分組求和法,考查計(jì)算能力,屬于中等題.18、(1)289200元;(2)能夠獲批;(3)應(yīng)選擇等額本金還款方式【解析】

(1)由題意可知,等額本金還款方式中,每月的還款額構(gòu)成一個(gè)等差數(shù)列,即可由等差數(shù)列的前n項(xiàng)和公式求得其還款總額,減去本金即為還款的利息;(2)根據(jù)題意,采取等額本息的還款方式,每月還款額為一等比數(shù)列,設(shè)小張每月還款額為元,由等比數(shù)列求和公式及參考數(shù)據(jù),即可求得其還款額,與收入的一半比較即可判斷;(3)計(jì)算出等額本息還款方式時(shí)所付出的總利息,兩個(gè)利息比較即可判斷.【詳解】(1)由題意可知,等額本金還款方式中,每月的還款額構(gòu)成一個(gè)等差數(shù)列,記為,表示數(shù)列的前項(xiàng)和,則,,則,故小張?jiān)摴P貸款的總利息為元.(2)設(shè)小張每月還款額為元,采取等額本息的還款方式,每月還款額為一等比數(shù)列,則,所以,即,因?yàn)?,所以小張?jiān)摴P貸款能夠獲批.(3)小張采取等額本息貸款方式的總利息為:,因?yàn)?,所以從?jīng)濟(jì)利益的角度來(lái)考慮,小張應(yīng)選擇等額本金還款方式.【點(diǎn)睛】本題考查了等差數(shù)列與等比數(shù)列求和公式的綜合應(yīng)用,數(shù)列在實(shí)際問(wèn)題中的應(yīng)用,理解題意是解決問(wèn)題的關(guān)鍵,屬于中檔題.19、(1)(2)【解析】

(1)由基本量法,求出公比后可得通項(xiàng)公式;(2)求出,用裂項(xiàng)相消法求和.【詳解】解:(1)設(shè)等比數(shù)列的公比為又因?yàn)椋越獾茫ㄉ幔┗蛩?,即?)據(jù)(1)求解知,,所以所以【點(diǎn)睛】本題考查求等比數(shù)列的通項(xiàng)公式,考查裂項(xiàng)相消法求和.解題方法是基本量法.基本量法是解決等差數(shù)列和等比數(shù)列的基本方法,務(wù)必掌握.20、(1)極大值,無(wú)極小值;(2).(3)見解析【解析】

(1)先求導(dǎo),根據(jù)導(dǎo)數(shù)和函數(shù)極值的關(guān)系即可求出;(2)先求導(dǎo),再函數(shù)在區(qū)間上遞增,分離參數(shù),構(gòu)造函數(shù),求出函數(shù)的最值,問(wèn)題得以解決;(3)取得到,取,可得,累加和根據(jù)對(duì)數(shù)的運(yùn)算性和放縮法即可證明.【詳解】解:(1)當(dāng)時(shí),設(shè)函數(shù),則令,解得當(dāng)時(shí),,當(dāng)時(shí),所以在上單調(diào)遞增,在上單調(diào)遞減所以當(dāng)時(shí),函數(shù)取得極大值,即極大值為,無(wú)極小值;(2)因?yàn)?,所以,因?yàn)樵趨^(qū)間上遞增,所以在上恒成立,所以在區(qū)間上恒成立.當(dāng)時(shí),在區(qū)間上恒成立,當(dāng)時(shí),,設(shè),則在區(qū)間上恒成立.所以在單調(diào)遞增,則,所以,即綜上所述.(3)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論