新高考數(shù)學二輪復習專題2-3 零點與復合嵌套函數(shù)(原卷版)_第1頁
新高考數(shù)學二輪復習專題2-3 零點與復合嵌套函數(shù)(原卷版)_第2頁
新高考數(shù)學二輪復習專題2-3 零點與復合嵌套函數(shù)(原卷版)_第3頁
新高考數(shù)學二輪復習專題2-3 零點與復合嵌套函數(shù)(原卷版)_第4頁
新高考數(shù)學二輪復習專題2-3 零點與復合嵌套函數(shù)(原卷版)_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

專題2-3零點與復合嵌套函數(shù)目錄TOC\o"1-1"\h\u題型01零點基礎:二分法 1題型02根的分布 2題型03根的分布:指數(shù)函數(shù)二次型 3題型04零點:切線法 3題型05抽象函數(shù)型零點 4題型06分段含參討論型 5題型07參數(shù)分界型討論 5題型08分離參數(shù)型水平線法求零點 6題型09對數(shù)絕對值水平線法 7題型10指數(shù)函數(shù)“一點一線”性質(zhì)型 8題型11零點:中心對稱性質(zhì)型 10題型12零點:軸對稱性質(zhì)型 10題型13嵌套型零點:內(nèi)外自復合型 11題型14嵌套型零點:內(nèi)外雙函數(shù)復合型 12題型15嵌套型零點:二次型因式分解 13題型16嵌套型零點:二次型根的分布 14題型17嵌套型零點:放大型函數(shù) 14高考練場 15題型01零點基礎:二分法【解題攻略】用二分法求函數(shù)零點近似值的步驟給定精確度SKIPIF1<0,用二分法求函數(shù)SKIPIF1<0零點SKIPIF1<0的近似值的一般步驟如下:①確定零點SKIPIF1<0的初始區(qū)間SKIPIF1<0,驗證SKIPIF1<0.②求區(qū)間SKIPIF1<0的中點c.③計算SKIPIF1<0,并進一步確定零點所在的區(qū)間:a.若SKIPIF1<0(此時SKIPIF1<0),則c就是函數(shù)的零點.b.若SKIPIF1<0(此時SKIPIF1<0),則令bSKIPIF1<0.c.若SKIPIF1<0(此時SKIPIF1<0,則令aSKIPIF1<0.④判斷是否達到精確度SKIPIF1<0:若SKIPIF1<0SKIPIF1<0,則得到零點近似值a(或b);否則重復步驟②~④.【典例1-1】(2022·高三課時練習)已知函數(shù)SKIPIF1<0滿足:對任意SKIPIF1<0,都有SKIPIF1<0,且SKIPIF1<0.在用二分法尋找零點的過程中,依次確定了零點所在區(qū)間為SKIPIF1<0,又SKIPIF1<0,則函數(shù)SKIPIF1<0的零點為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例1-2】(2023·全國·高三專題練習)若函數(shù)SKIPIF1<0的一個正數(shù)零點附近的函數(shù)值用二分法計算,其參考數(shù)據(jù)如下:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0那么方程SKIPIF1<0的一個近似根(精確度SKIPIF1<0)可以是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-1】(2021秋·湖南·高三校聯(lián)考階段練習)已知函數(shù)SKIPIF1<0的一個零點SKIPIF1<0,用二分法求精確度為0.01的SKIPIF1<0的近似值時,判斷各區(qū)間中點的函數(shù)值的符號最多需要的次數(shù)為(

)A.6 B.7 C.8 D.9【變式1-2】(2021·江蘇南通·高三海安高級中學??迹┖瘮?shù)SKIPIF1<0的零點與SKIPIF1<0的零點之差的絕對值不超過SKIPIF1<0,則SKIPIF1<0的解析式可能是A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-3】(2020秋·湖南邵陽·高三湖南省邵東市第一中學??茧A段練習)已知圖像連續(xù)不斷的函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上有唯一零點,如果用“二分法”求這個零點(精確度0.0001)的近似值,那么將區(qū)間SKIPIF1<0等分的次數(shù)至少是(

)A.4 B.6 C.7 D.10題型02根的分布【解題攻略】根的分布1.基礎分布:0分布特征:(1)、兩正根;(2)、兩負跟;(3)、一正一負兩根。方法:判別式+韋達定理區(qū)間分布與K分布特征:(1)、根比某個常數(shù)K大或者?。唬?)、根在某個區(qū)間(a,b)內(nèi)(外)方法:借助復合條件的大致圖像,從以下四點入手開口方向;判別式;對稱軸位置;(4)根的分布區(qū)間端點對應的函數(shù)值正負【典例1-1】(2023上·甘肅武威·高三統(tǒng)考開學考試)關于SKIPIF1<0的一元二次方程SKIPIF1<0有兩個不相等的正實數(shù)根,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0且SKIPIF1<0【典例1-2】(2023·高三課時練習)關于x的方程SKIPIF1<0至少有一個負根的充要條件是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0【變式1-1】(2022上·江蘇揚州·高三統(tǒng)考階段練習)已知一元二次方程SKIPIF1<0的兩根都在SKIPIF1<0內(nèi),則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-2】(2022上·廣東廣州·高三廣州市第二中學??茧A段練習)已知關于SKIPIF1<0的方程SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)有實根,則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-3】(2022上·遼寧沈陽·高三沈陽市外國語學校??茧A段練習)一元二次方程SKIPIF1<0有一個正根和一個負根的一個充要條件是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0題型03根的分布:指數(shù)函數(shù)二次型【解題攻略】指數(shù)型根的分布換元,令SKIPIF1<0,有指數(shù)函數(shù)性質(zhì)知,t的最大范圍為正。注意題中對方程根的正負范圍,對應的t的取值范圍根據(jù)換元后新“根”的范圍,用一元二次型“根的分布”求解。特殊的函數(shù)式子,可以分離參數(shù),轉(zhuǎn)化為“水平線型”求解。【典例1-1】(2021上·上海浦東新·高三上海市建平中學??计谥校╆P于SKIPIF1<0的方程SKIPIF1<0恰有兩個根為SKIPIF1<0、SKIPIF1<0,且SKIPIF1<0、SKIPIF1<0分別滿足SKIPIF1<0和SKIPIF1<0,則SKIPIF1<0【典例1-2】.(2021·高三課時練習)設a為實數(shù),若關于x的方程SKIPIF1<0有實數(shù)解,則a的取值范圍是.【變式1-1】(2021·山西臨汾·統(tǒng)考二模)已知函數(shù)SKIPIF1<0.若存在SKIPIF1<0,使得SKIPIF1<0,則m的取值范圍是.【變式1-2】(2021上·四川遂寧·高三階段)已知方程SKIPIF1<0有兩個不相等實根,則SKIPIF1<0的取值范圍為.【變式1-3】(2022下·浙江舟山·高三舟山中學??奸_學考試)關于x的方程k?4x﹣k?2x+1+6(k﹣5)=0在區(qū)間[﹣1,1]上有解,則實數(shù)k的取值范圍是.題型04零點:切線法【解題攻略】切線法求零點或者零點個數(shù):適用于小題。大題則過程證明不嚴謹,容易丟過程分。數(shù)形結(jié)合,或者求導“畫圖”,求導畫圖,有時候需要判斷“上凸或者下凹”特殊的函數(shù),需要通過“虛設零點”求得。【典例1-1】(2020上·湖北武漢·高三校聯(lián)考)已知函數(shù)SKIPIF1<0有三個零點SKIPIF1<0SKIPIF1<0SKIPIF1<0,則SKIPIF1<0(

)A.7 B.8 C.15 D.16【典例1-2】(2020上·河南·高三校聯(lián)考階段練習)已知函數(shù)SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上有SKIPIF1<0個不同的零點,則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【變式1-1】(2021·湖南長沙·高三長郡中學階段練習)函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),且SKIPIF1<0為偶函數(shù),當SKIPIF1<0時,SKIPIF1<0,若函數(shù)SKIPIF1<0恰有一個零點,則實數(shù)SKIPIF1<0的取值集合是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【變式1-2】(2024·安徽黃山·屯溪一中??寄M預測)已知函數(shù)SKIPIF1<0,若函數(shù)SKIPIF1<0有三個零點,則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【變式1-3】(2020·天津武清·天津市武清區(qū)楊村第一中學??寄M預測)已知函數(shù),若函數(shù)SKIPIF1<0有三個零點,則實數(shù)SKIPIF1<0的取值范圍是.題型05抽象函數(shù)型零點【解題攻略】抽象型函數(shù)判斷函數(shù)圖像定義域判斷。函數(shù)奇偶性判斷。函數(shù)簡單性判斷。函數(shù)值正負判斷利用極限,判斷無窮遠處的值與“比值”【典例1-1】(安徽省示范高中培優(yōu)聯(lián)盟2022-2023學年高三上學期11月冬季聯(lián)考數(shù)學試題)已知定義域為SKIPIF1<0的偶函數(shù)SKIPIF1<0的圖象是連續(xù)不斷的曲線,且SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0在區(qū)間SKIPIF1<0上的零點個數(shù)為(

)A.100 B.102 C.200 D.202【典例1-2】(山東省德州市2022屆高三三模數(shù)學試題)已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),對于任意SKIPIF1<0,必有SKIPIF1<0,若函數(shù)SKIPIF1<0只有一個零點,則函數(shù)SKIPIF1<0有(

)A.最小值為SKIPIF1<0 B.最大值為SKIPIF1<0 C.最小值為4 D.最大值為4【變式1-1】已知SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),且SKIPIF1<0,則函數(shù)SKIPIF1<0的零點個數(shù)是(

)A.3 B.4 C.5 D.6【變式1-2】(2023秋·浙江杭州·高三杭州市長河高級中學校考)定義在R上的單調(diào)函數(shù)SKIPIF1<0滿足:SKIPIF1<0,若SKIPIF1<0在SKIPIF1<0上有零點,則a的取值范圍是題型06分段含參討論型【典例1-1】(湘豫名校聯(lián)考2022-2023學年高三上學期10月一輪復習診斷考試(一)數(shù)學(文科)試題)已知函數(shù)SKIPIF1<0有且僅有兩個零點,則實數(shù)a的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0或SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<0【典例1-2】(2021·江蘇·高三專題練習)設SKIPIF1<0,e是自然對數(shù)的底數(shù),函數(shù)SKIPIF1<0有零點,且所有零點的和不大于6,則a的取值范圍為.【變式1-1】已知函數(shù)SKIPIF1<0,若函數(shù)SKIPIF1<0只有兩個零點,則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-2】已知函數(shù)SKIPIF1<0若函數(shù)SKIPIF1<0有三個零點,則實數(shù)a的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-3】已知函數(shù)SKIPIF1<0,則“SKIPIF1<0”是“SKIPIF1<0恰有2個零點”的(

)A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件題型07參數(shù)分界型討論【解題攻略】參數(shù)在分段函數(shù)分界處,需要分類討論。分類討論討論點,首先是兩段函數(shù)的交點處,齊次是每段函數(shù)的各自“特色”處,如二次函數(shù)如果二次項有參,則“開口”即位討論點之一,要“多畫圖”,每一種情況,畫處各自“小圖”做對比【典例1-1】(2023·全國·高三專題練習)函數(shù)SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0的零點個數(shù)為;若SKIPIF1<0恰有4個零點,則SKIPIF1<0的取值范圍是.【典例1-2】.(2021秋·山東濟南·高三濟南外國語學校校考期中)已知函數(shù)SKIPIF1<0,如果函數(shù)SKIPIF1<0恰有兩個零點,那么實數(shù)SKIPIF1<0的取值范圍為.【變式1-1】(2022秋·天津河西·高三天津?qū)嶒炛袑W??茧A段練習)設SKIPIF1<0,函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)恰有3個零點,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-2】(2023春·天津南開·高三南開大學附屬中學??茧A段練習)已知SKIPIF1<0,函數(shù)SKIPIF1<0恰有3個零點,則m的取值范圍是(

)SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-3】(2023春·河南南陽·高三河南省桐柏縣第一高級中學校考階段練習)設SKIPIF1<0,函數(shù)SKIPIF1<0,若SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)恰有9個零點,則a的取值范圍是.題型08分離參數(shù)型水平線法求零點【解題攻略】分離參數(shù)水平線法求零點1.分離參數(shù)。2.構(gòu)造函數(shù)于水平線。3.構(gòu)造函數(shù)時,要注意函數(shù)是否有“水平漸近線”【典例1-1】(2021上·山東濰坊·高三統(tǒng)考)已知SKIPIF1<0,符號SKIPIF1<0表示不超過SKIPIF1<0的最大整數(shù),若函數(shù)SKIPIF1<0有且僅有3個零點,則SKIPIF1<0的取值范圍是SKIPIF1<0SKIPIF1<0A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【典例1-2】(2023·全國·模擬預測)已知函數(shù)SKIPIF1<0,若存在SKIPIF1<0,使得方程SKIPIF1<0有兩個不同的實數(shù)根且兩根之和為6,則實數(shù)SKIPIF1<0的取值范圍是.【變式1-1】(2022上·廣東汕頭·高三校考)已知函數(shù)SKIPIF1<0,令SKIPIF1<0,則下列說法正確的(

)A.函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0B.當SKIPIF1<0時,SKIPIF1<0有3個零點C.當SKIPIF1<0時,SKIPIF1<0的所有零點之和為SKIPIF1<0D.當SKIPIF1<0時,SKIPIF1<0有1個零點【變式1-2】(2023上·山西朔州·高三懷仁市第一中學校??迹┮阎瘮?shù)SKIPIF1<0,若SKIPIF1<0恰有3個零點SKIPIF1<0,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-3】(2021上·河南新鄉(xiāng)·高三??茧A段練習)若函數(shù)SKIPIF1<0有三個零點,則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0題型09對數(shù)絕對值水平線法【解題攻略】對數(shù)絕對值對于SKIPIF1<0,SKIPIF1<0若有兩個零點,則滿足1.SKIPIF1<02.SKIPIF1<03.要注意上述結(jié)論在對稱軸作用下的“變與不變”【典例1-1】.(2021上·江蘇連云港·高三統(tǒng)考)已知函數(shù)SKIPIF1<0,若關于SKIPIF1<0的方程SKIPIF1<0有4個不同的實根SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例1-2】(2020上·河南信陽·高三統(tǒng)考)已知函數(shù)SKIPIF1<0,若方程SKIPIF1<0有四個不同的解SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-1】(2019·湖南·高三湖南師大附中??茧A段練習)已知函數(shù)SKIPIF1<0是定義域為SKIPIF1<0的奇函數(shù),且當SKIPIF1<0時,SKIPIF1<0,若函數(shù)SKIPIF1<0有六個零點,分別記為SKIPIF1<0,則SKIPIF1<0的取值范圍是.A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-2】(2023上·湖南長沙·高三周南中學校考開學考試)已知函數(shù)SKIPIF1<0,若SKIPIF1<0有四個解SKIPIF1<0,則SKIPIF1<0的取值范圍是.【變式1-3】.(2020上·河南鄭州·高三校聯(lián)考中)已知函數(shù)SKIPIF1<0,若方程SKIPIF1<0有4個不同的實根SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0題型10指數(shù)函數(shù)“一點一線”性質(zhì)型【解題攻略】指數(shù)函數(shù),無論平移或者翻折,始終要注意函數(shù)的核心性質(zhì)“一點一線”是否變化。要把“一點一線”這個核心性質(zhì)提升到底數(shù)大于1或者小于1的分類討論相同地位SKIPIF1<0SKIPIF1<0SKIPIF1<0圖象性質(zhì)①定義域SKIPIF1<0,值域SKIPIF1<0②SKIPIF1<0,即時SKIPIF1<0,SKIPIF1<0,圖象都經(jīng)過SKIPIF1<0點③SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0等于底數(shù)SKIPIF1<0④在定義域上是單調(diào)減函數(shù)在定義域上是單調(diào)增函數(shù)⑤SKIPIF1<0時,SKIPIF1<0;SKIPIF1<0時,SKIPIF1<0SKIPIF1<0時,SKIPIF1<0;SKIPIF1<0時,SKIPIF1<0⑥既不是奇函數(shù),也不是偶函數(shù)【典例1-1】(2023上·云南昆明·高三昆明八中校考)已知SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例1-2】(2023上·安徽·高三池州市第一中學校聯(lián)考階段練習)已知函數(shù)SKIPIF1<0,若函數(shù)SKIPIF1<0有四個不同的零點SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-1】(2023上·四川成都·高三四川省成都列五中學??迹┤絷P于x的方程SKIPIF1<0有兩個不等的實數(shù)解,則實數(shù)m的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-2】(2023上·重慶沙坪壩·高三重慶南開中學??茧A段練習)已知函數(shù)SKIPIF1<0,若關于x的方程SKIPIF1<0有四個不同的根SKIPIF1<0(SKIPIF1<0SKIPIF1<0),則SKIPIF1<0的最大值是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【變式1-3】(2023下·四川達州·高三校考階段練習)已知函數(shù)SKIPIF1<0若函數(shù)SKIPIF1<0有三個不同的零點,則實數(shù)SKIPIF1<0的取值范圍是(

).A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型11零點:中心對稱性質(zhì)型【解題攻略】函數(shù)中心對稱:(1)若函數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的一個對稱中心為SKIPIF1<0(2)若函數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的一個對稱中心為SKIPIF1<0(3)若函數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的一個對稱中心為SKIPIF1<0.【典例1-1】(2023·全國·高三專題練習)函數(shù)SKIPIF1<0在SKIPIF1<0上的所有零點之和等于.【典例1-2】(2021·全國·高三專題練習)已知函數(shù)SKIPIF1<0為定義在SKIPIF1<0上的奇函數(shù),當SKIPIF1<0時,SKIPIF1<0,則關于SKIPIF1<0的函數(shù)SKIPIF1<0SKIPIF1<0(SKIPIF1<0)的所有零點之和為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-1】(2022上·甘肅張掖·高三階段練習)已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),若SKIPIF1<0,則關于SKIPIF1<0的方程SKIPIF1<0的所有根之和為A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-2】(2021下·江西宜春·高三階段性)已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),若SKIPIF1<0,則關于SKIPIF1<0的方程SKIPIF1<0的所有根之和為A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-3】.(2022上·吉林松原·高三統(tǒng)考)定義在R上的奇函數(shù)f(x),當x≥0時,f(x)=,則關于x的函數(shù)F(x)=f(x)﹣a(0<a<1)的所有零點之和為A.3a﹣1 B.1﹣3a C.3﹣a﹣1 D.1﹣3﹣a題型12零點:軸對稱性質(zhì)型【解題攻略】軸對稱性的常用結(jié)論如下:若函數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的一條對稱軸為SKIPIF1<0若函數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的一條對稱軸為SKIPIF1<0若函數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的一條對稱軸為SKIPIF1<0(4)f(a-x)=f(b+x)?f(x)的圖象關于直線x=eq\f(a+b,2)對稱;【典例1-1】(2020·廣東中山·校聯(lián)考模擬預測)定義域為SKIPIF1<0的函數(shù)SKIPIF1<0,若關于SKIPIF1<0的方程SKIPIF1<0恰有3個不同的實數(shù)解SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.1 B.2 C.SKIPIF1<0 D.SKIPIF1<0【典例1-2】(2020上·遼寧沈陽·高三校聯(lián)考)已知定義在SKIPIF1<0上的奇函數(shù)SKIPIF1<0,滿足SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,則函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的所有零點之和為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-1】(2018上·湖南衡陽·高三衡陽市一中??迹┮阎瘮?shù)SKIPIF1<0,若SKIPIF1<0互不相等),則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-2】(2019上·天津南開·高三天津二十五中統(tǒng)考)已知三個函數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的零點依次為SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,則SKIPIF1<0A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-3】(2018上·貴州貴陽·高三貴陽一中階段練習)已知SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),滿足SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,則函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上所有零點之和為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型13嵌套型零點:內(nèi)外自復合型【解題攻略】對于嵌套型復合函數(shù)SKIPIF1<0的零點個數(shù)問題,求解思路如下:(1)確定內(nèi)層函數(shù)SKIPIF1<0和外層函數(shù)SKIPIF1<0;(2)確定外層函數(shù)SKIPIF1<0的零點SKIPIF1<0;(3)確定直線SKIPIF1<0與內(nèi)層函數(shù)SKIPIF1<0圖象的交點個數(shù)分別為SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,則函數(shù)SKIPIF1<0的零點個數(shù)為SKIPIF1<0.【典例1-1】(2015下·浙江嘉興·高三階段練習)已知函數(shù)SKIPIF1<0,則下列關于函數(shù)SKIPIF1<0的零點個數(shù)的判斷正確的是A.當SKIPIF1<0時,有3個零點;當SKIPIF1<0時,有4個零點B.當SKIPIF1<0時,有4個零點;當SKIPIF1<0時,有3個零點C.無論k為何值,均有3個零點D.無論k為何值,均有4個零點【典例1-2】(2022上·河北石家莊·高三統(tǒng)考)已知函數(shù)若函數(shù)的零點個數(shù)為A.3 B.4 C.5 D.6【變式1-1】(2021上·天津·高三天津?qū)嶒炛袑W校考期中)已知SKIPIF1<0為偶函數(shù),當SKIPIF1<0時,SKIPIF1<0,若函數(shù)SKIPIF1<0恰有4個零點,則實數(shù)SKIPIF1<0的取值范圍(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-2】(2021上·安徽滁州·高三安徽省定遠中學校聯(lián)考)已知函數(shù)SKIPIF1<0,若SKIPIF1<0存在四個互不相等的實數(shù)根,則實數(shù)SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-3】(2019上·黑龍江哈爾濱·高三哈爾濱三中??迹┮阎瘮?shù)SKIPIF1<0,則函數(shù)SKIPIF1<0的零點個數(shù)為A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型14嵌套型零點:內(nèi)外雙函數(shù)復合型【典例1-1】(2021上·陜西安康·高三統(tǒng)考階段練習)已知函數(shù)SKIPIF1<0,SKIPIF1<0,若方程SKIPIF1<0有四個不等的實數(shù)根,則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【典例1-2】(2023上·江西吉安·高三吉安一中??迹┮阎瘮?shù)SKIPIF1<0,SKIPIF1<0,當SKIPIF1<0時,方程SKIPIF1<0根的個數(shù)為(

).A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-1】(2021上·安徽池州·高三池州市第一中學??迹┰O函數(shù)SKIPIF1<0,SKIPIF1<0,若方程SKIPIF1<0有四個實數(shù)根,則實數(shù)t的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-2】(2020上·江蘇南京·高三南京市第五高級中學校考階段練習)已知函數(shù)SKIPIF1<0,SKIPIF1<0,若函數(shù)SKIPIF1<0有6個零點,則實數(shù)SKIPIF1<0的取值范圍為A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-3】(2021·全國·高三專題練習)已知函數(shù)SKIPIF1<0SKIPIF1<0,則方程SKIPIF1<0的實數(shù)根的個數(shù)為(

)A.5 B.6 C.7 D.8題型15嵌套型零點:二次型因式分解【典例1-1】(2020·山東德州·統(tǒng)考一模)已知函數(shù)SKIPIF1<0,若關于SKIPIF1<0的方程SKIPIF1<0有且只有兩個不同實數(shù)根,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【典例1-2】(2020下·江蘇無錫·高三校考)已知函數(shù)SKIPIF1<0,若關于x的方程SKIPIF1<0有5個不同的實數(shù)解,則實數(shù)m的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-1】(2022秋·天津河東·高三??茧A段練習)已知函數(shù)SKIPIF1<0,若函數(shù)SKIPIF1<0恰有4個不同的零點,則a的取值范圍為.【變式1-2】(2023春·上海寶山·高三??迹┮阎猄KIPIF1<0滿足SKIPIF1<0,當SKIPIF1<0,SKIPIF1<0,若函數(shù)SKIPIF1<0在SKIPIF1<0上恰有八個不同的零點,則實數(shù)SKIPIF1<0的取值范圍為.【變式1-3】(2019·浙江衢州·衢州二中??级#┰OSKIPIF1<0(其中SKIPIF1<0為自然對數(shù)的底數(shù)),SKIPIF1<0,若函數(shù)SKIPIF1<0恰有4個不同的零點,則實數(shù)SKIPIF1<0的取值范圍為.題型16嵌套型零點:二次型根的分布【典例1-1】(2023·遼寧沈陽·東北育才雙語學校校考一模)已知函數(shù)SKIPIF1<0,若關于x的方程SKIPIF1<0有6個不同的實數(shù)根,則m的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例1-2】(2022下·河南信陽·高三信陽高中??茧A段練習)已知函數(shù)SKIPIF1<0若關于x的方程SKIPIF1<0有8個不同的實數(shù)根,則實數(shù)b的取值范圍是()A.SKIPIF1<0

B.

SKIPIF1<0C.SKIPIF1<0 D.[﹣5,﹣4]【變式1-1】(2020下·河南·高撒統(tǒng)考)已知函數(shù)SKIPIF1<0,若關于SKIPIF1<0的方程SKIPIF1<0在區(qū)間SKIPIF1<0上有兩個不相等的實數(shù)根,則實數(shù)SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【變式1-2】(2020·河北邯鄲·統(tǒng)考二模)已知SKIPIF1<0若函數(shù)SKIPIF1<0恰有5個零點,則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-3】(2023上·江蘇常州·高三江蘇省前黃高級中學??奸_學考試)已知函數(shù)SKIPIF1<0,關于SKIPIF1<0的方程SKIPIF1<0恰有SKIPIF1<0個不同實數(shù)解,則SKIPIF1<0的取值范圍為.題型17嵌套型零點:放大型函數(shù)【解題攻略】(1)如果函數(shù)在SKIPIF1<0上滿足SKIPIF1<0,則此類函數(shù)在局部范圍上具有與周期函數(shù)相類似的性質(zhì).(2)復雜函數(shù)的零點,可以轉(zhuǎn)化為熟悉函數(shù)圖像的交點來處理.滿足SKIPIF1<0形式,一般情況下,b多是0或者1.俗稱為“放大鏡函數(shù)”。【典例1-1】(寧夏石嘴山市平羅中學2022屆高三第四次模擬考試數(shù)學(理)試題)已知定義為R的奇函數(shù)SKIPIF1<0滿足:SKIPIF1<0,若方程SKIPIF1<0在SKIPIF1<0上恰有三個根,則實數(shù)k的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【典例1-2】.已知函數(shù)f(x)=1?2x?3,1≤x≤2A.關于x的方程f(x)?12nB.若函數(shù)y=f(x)?kx有4個零點,則實數(shù)k的取值范圍為1C.對于實數(shù)x∈[1,+∞),不等式2xf(x)?3≤0恒成立D.當x∈[2n?1,2n【變式1-1】(河北省邯鄲市大名縣第一中學2020-2021學年高三下學期5月月考數(shù)學試題)已知函數(shù)SKIPIF1<0,函數(shù)SKIPIF1<0滿足以下三點條件:①定義域為SKIPIF1<0;②對任意SKIPIF1<0,有SKIPIF1<0;③當SKIPIF1<0時,SKIPIF1<0則函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上零點的個數(shù)為__________個.【變式1-2】(浙江省寧波市鎮(zhèn)海中學2020-2021學年高三下學期開學考試數(shù)學試題)定義在R上的奇函數(shù)SKIPIF1<0滿足,當SKIPIF1<0時,SKIPIF1<0,且SKIPIF1<0時,有SKIPIF1<0,則函數(shù)SKIPIF1<0在SKIPIF1<0上的零點個數(shù)為A.9 B.8 C.7 D.6【變式1-3】已知SKIPIF1<0,則函數(shù)SKIPIF1<0零點的個數(shù)為___________.高考練場1.(2021秋·吉林長春·高三??茧A段練習)若函數(shù)SKIPIF1<0的零點與函數(shù)SKIPIF1<0的零點之差的絕對值不超過SKIPIF1<0,則SKIPIF1<0可以是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<02.(2021上·湖南長沙·高三長沙一中??奸_學考試)關于SKIPIF1<0的方程SKIPIF1<0有兩個不相等的實數(shù)根SKIPIF1<0且SKIPIF1<0,那么SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2020·內(nèi)蒙古包頭·高三北重三中??迹╆P于SKIPIF1<0的方程SKIPIF1<0有兩個不相等的實數(shù)根,則實數(shù)SKIPIF1<0的取值范圍是.4.(2023春·新疆烏魯木齊·高三新疆師范大學附屬中學校考開學考試)若SKIPIF1<0若SKIPIF1<0有兩個零點,則

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論