版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
第三章導(dǎo)數(shù)及其應(yīng)用本試卷22小題,滿分150分??荚囉脮r120分鐘一、單項選擇題:本題共8小題,每小題5分,共40分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.(2023·重慶·統(tǒng)考二模)已知函數(shù)SKIPIF1<0,則“SKIPIF1<0”是“SKIPIF1<0在SKIPIF1<0上單調(diào)遞增”的(
)A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件【答案】C【解析】由題SKIPIF1<0若SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0恒成立,SKIPIF1<0即SKIPIF1<0,故“SKIPIF1<0”是“SKIPIF1<0在SKIPIF1<0上單調(diào)遞增”的必要不充分條件故選:SKIPIF1<0.2.(2023·四川自貢·統(tǒng)考二模)已知函數(shù)SKIPIF1<0,則SKIPIF1<0(
)A.有2個極大值點 B.有1個極大值點和1個極小值點C.有2個極小值點 D.有且僅有一個極值點【答案】D【分析】求導(dǎo),根據(jù)導(dǎo)函數(shù)的符號求得函數(shù)的單調(diào)區(qū)間,再根據(jù)極值點的定義即可得解.【詳解】SKIPIF1<0,因為SKIPIF1<0(當(dāng)且僅當(dāng)SKIPIF1<0時取等號),則當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,單調(diào)遞減區(qū)間為SKIPIF1<0,所以函數(shù)SKIPIF1<0的極小值點為SKIPIF1<0,沒有極大值點,即函數(shù)SKIPIF1<0有且僅有一個極值點.故選:D.3.(2023·重慶·統(tǒng)考三模)已知直線y=ax-a與曲線SKIPIF1<0相切,則實數(shù)a=(
)A.0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】由SKIPIF1<0且x不為0,得SKIPIF1<0設(shè)切點為SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,可得SKIPIF1<0.故選:C4.(2023·四川成都·統(tǒng)考二模)若函數(shù)SKIPIF1<0在SKIPIF1<0處有極大值,則實數(shù)SKIPIF1<0的值為(
)A.1 B.SKIPIF1<0或SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】函數(shù)SKIPIF1<0,SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0處有極大值,可得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0時SKIPIF1<0,SKIPIF1<0時SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0在SKIPIF1<0處有極小值,不合題意.當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0時SKIPIF1<0,SKIPIF1<0時SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0在SKIPIF1<0處有極大值,符合題意.綜上可得,SKIPIF1<0.5.(2023·廣東汕頭·統(tǒng)考二模)已知函數(shù)SKIPIF1<0,則SKIPIF1<0的大致圖象為(
)A. B.C. D.【答案】C【解析】SKIPIF1<0,令SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0和SKIPIF1<0上單調(diào)遞增,故選:C6.(2023·重慶·統(tǒng)考一模)已知函數(shù)fx及其導(dǎo)函數(shù)f'(x)的定義域為R,記g(x)=f'(x),A.f(1)=f(2) B.f(1)=f(3) C.f(1)=f(4) D.f(1)=f(5)【答案】D【分析】根據(jù)f2x+1從而求得g(1)=0,g(x【詳解】因為f2x+1是偶函數(shù),所以f(?2x+1)=f兩邊求導(dǎo)得?2f'(?2所以g(2x+1)=?g(?2x+1)令x=1可得g(1)=?g因為g(x+2)為偶函數(shù),所以gx+2=g?x+2,即又因g(4?x)=?g(?x+2),所以g(1)=g(3)=0,故選:D.7.(2023·廣東佛山·統(tǒng)考一模)已知函數(shù)fx=logax,0<x<12a?x,x≥12(A.0,e?C.0,e?【答案】D【分析】當(dāng)0<x<12時,f(x)=logax≥x構(gòu)造函數(shù)g(x)=2lnxx,求導(dǎo)判斷單調(diào)性,從而推出【詳解】當(dāng)0<x<1由圖可知,0<a此時若對任意0<x<1只需loga12≥14,即loga當(dāng)x≥12此時若對任意x≥12,(∴l(xiāng)n(1a)≥令g(x)=當(dāng)x∈(0,e),g'∴g(x綜上,116故選:D.8.(2023·黑龍江哈爾濱·哈師大附中統(tǒng)考三模)已知函數(shù)SKIPIF1<0,對任意的SKIPIF1<0,都有SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,若SKIPIF1<0,則實數(shù)SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】令SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0為SKIPIF1<0上的奇函數(shù),因為SKIPIF1<0時,SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0為單調(diào)遞減函數(shù),且SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上為單調(diào)遞減函數(shù),由不等式SKIPIF1<0,可得SKIPIF1<0整理得到SKIPIF1<0,即SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0,所以實數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.故選:B.二、多項選擇題:本題共4小題,每小題5分,共20分。在每小題給出的選項中,有多項符合題目要求。全部選對的得5分,部分選對的得2分,有選錯的得0分。9.(2023·山西運城·統(tǒng)考三模)已知函數(shù)SKIPIF1<0,則下列說法正確的是(
)A.曲線SKIPIF1<0在SKIPIF1<0處的切線與直線SKIPIF1<0垂直B.SKIPIF1<0在SKIPIF1<0上單調(diào)遞增C.SKIPIF1<0的極小值為SKIPIF1<0D.SKIPIF1<0在SKIPIF1<0上的最小值為SKIPIF1<0【答案】BC【詳解】因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故A錯誤;令SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故B正確;當(dāng)SKIPIF1<0時SKIPIF1<0,所以SKIPIF1<0的單調(diào)遞減區(qū)間為SKIPIF1<0,所以SKIPIF1<0的極小值為SKIPIF1<0,故C正確;SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以最小值為SKIPIF1<0,故D錯誤;故選:BC10.(浙江省金麗衢十二校、“七彩陽光”2023屆高三下學(xué)期3月聯(lián)考數(shù)學(xué)試題)已知SKIPIF1<0,且SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】BC【分析】對于A、B選項,利用條件構(gòu)造SKIPIF1<0,比值換元將問題轉(zhuǎn)化為單變量函數(shù)求值域問題;對于C、D選項,構(gòu)造函數(shù)SKIPIF1<0通過分析單調(diào)性判斷即可.【詳解】∵SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0令SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0且SKIPIF1<0時,令SKIPIF1<0,則SKIPIF1<0綜上SKIPIF1<0,SKIPIF1<0,即B正確;又因為SKIPIF1<0,所以SKIPIF1<0令SKIPIF1<0,顯然SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0)的零點y滿足SKIPIF1<0∴SKIPIF1<0,解得SKIPIF1<0.所以要證SKIPIF1<0,即證SKIPIF1<0因為SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以即證SKIPIF1<0而SKIPIF1<0所以SKIPIF1<0成立,即SKIPIF1<0成立,C正確因為SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,AD錯誤.故選:B、C.11.(湖南省名校教研聯(lián)盟2023屆高三下學(xué)期4月聯(lián)考數(shù)學(xué)試題)已知SKIPIF1<0和SKIPIF1<0是定義在上SKIPIF1<0的函數(shù),若存在區(qū)間SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0則稱SKIPIF1<0與SKIPIF1<0在SKIPIF1<0上同步.則(
)A.SKIPIF1<0與SKIPIF1<0在SKIPIF1<0上同步B.存在SKIPIF1<0使得SKIPIF1<0與SKIPIF1<0在SKIPIF1<0上同步C.若存在SKIPIF1<0使得SKIPIF1<0與SKIPIF1<0在SKIPIF1<0上同步,則SKIPIF1<0D.存在區(qū)間SKIPIF1<0使得SKIPIF1<0與SKIPIF1<0在SKIPIF1<0上同步【答案】BC【分析】由題意轉(zhuǎn)化為SKIPIF1<0在SKIPIF1<0上是否至少存在兩個零點SKIPIF1<0,SKIPIF1<0,結(jié)合零點存在性定理判斷選項A、B;結(jié)合導(dǎo)數(shù)找到函數(shù)的單調(diào)性及最值,再根據(jù)函數(shù)零點情況判斷選項C、D.【詳解】由題知SKIPIF1<0與SKIPIF1<0在上SKIPIF1<0同步,即SKIPIF1<0在SKIPIF1<0上,至少存在兩個零點SKIPIF1<0,SKIPIF1<0,對于A,SKIPIF1<0在上SKIPIF1<0單調(diào)遞增,故A錯誤.對于B,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上必有一個零點,故B正確.對于C,SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,至多有一個零點,不符合題意,當(dāng)SKIPIF1<0時,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,當(dāng)SKIPIF1<0時SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0取最大值,若SKIPIF1<0要有兩個零點,則SKIPIF1<0,解得SKIPIF1<0,故C正確.對于D,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞增,又SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0沒有零點,故D錯誤.故選:BC.12.(重慶市2023屆高三三模數(shù)學(xué)試題)函數(shù)SKIPIF1<0是定義在SKIPIF1<0上不恒為零的可導(dǎo)函數(shù),對任意的x,SKIPIF1<0均滿足:SKIPIF1<0,SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】ABD【分析】先得到SKIPIF1<0,再假設(shè)SKIPIF1<0為正整數(shù),利用累乘法求出SKIPIF1<0的解析式,再驗證SKIPIF1<0不為正整數(shù)時,SKIPIF1<0也符合題意.利用SKIPIF1<0的解析式容易判斷ABC,根據(jù)錯位相減法求和可判斷D.【詳解】令SKIPIF1<0,得SKIPIF1<0,代入SKIPIF1<0,得SKIPIF1<0,當(dāng)SKIPIF1<0為正整數(shù)時,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,代入SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,又當(dāng)SKIPIF1<0時,也符合題意,所以SKIPIF1<0.當(dāng)SKIPIF1<0不為正整數(shù)時,經(jīng)驗證SKIPIF1<0也滿足SKIPIF1<0,故SKIPIF1<0為任意實數(shù)時,都有SKIPIF1<0.所以SKIPIF1<0,故A正確;SKIPIF1<0,故B正確;所以SKIPIF1<0,SKIPIF1<0,故C不正確;所以SKIPIF1<0SKIPIF1<0,令SKIPIF1<0SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故D正確.故選:ABD三、填空題:本大題共4小題,每小題5分,共20分。13.(上海市建平中學(xué)2023屆高三三模數(shù)學(xué)試題)函數(shù)SKIPIF1<0的導(dǎo)數(shù)為SKIPIF1<0__________.【答案】SKIPIF1<0【分析】利用復(fù)合函數(shù)的求導(dǎo)法則以及商的導(dǎo)數(shù)運算法可求得結(jié)果.【詳解】因為SKIPIF1<0,則SKIPIF1<0.故答案為:SKIPIF1<0.14.(2023·安徽安慶·統(tǒng)考二模)已知函數(shù)SKIPIF1<0,其中SKIPIF1<0,若不等式SKIPIF1<0對任意SKIPIF1<0恒成立,則SKIPIF1<0的最小值為______.【答案】SKIPIF1<0【分析】首先求出SKIPIF1<0,則問題即為SKIPIF1<0,可同構(gòu)變形為SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0,SKIPIF1<0,利用導(dǎo)數(shù)說明函數(shù)的單調(diào)性,即可得到SKIPIF1<0,參變分離得到SKIPIF1<0,再令SKIPIF1<0,SKIPIF1<0,利用導(dǎo)數(shù)求出函數(shù)SKIPIF1<0的最大值,即可求出參數(shù)的取值范圍,即可得解.【詳解】因為SKIPIF1<0,所以SKIPIF1<0,所以不等式SKIPIF1<0即為SKIPIF1<0,即SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0即為SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,而SKIPIF1<0,SKIPIF1<0,因此由SKIPIF1<0等價于SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以當(dāng)SKIPIF1<0時SKIPIF1<0,當(dāng)SKIPIF1<0時SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,所以SKIPIF1<0,故正實數(shù)SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<015.(2023·江西南昌·統(tǒng)考二模)潮汐現(xiàn)象是地球上的海水在太陽和月球雙重引力作用下產(chǎn)生的全球性的海水的周期性變化,人們可以利用潮汐進行港口貨運.某港口具體時刻SKIPIF1<0(單位:小時)與對應(yīng)水深SKIPIF1<0(單位:米)的函數(shù)關(guān)系式為SKIPIF1<0.某艘大型貨船要進港,其相應(yīng)的吃水深度(船底與水面的距離)為7米,船底與海底距離不小于4.5米時就是安全的,該船于2點開始卸貨(一次卸貨最長時間不超過8小時),同時吃水深度以0.375米/小時的速度減少,該船8小時內(nèi)沒有卸完貨,要及時駛?cè)肷钏畢^(qū)域,則該船第一次停止卸貨的時刻為______.【答案】6時【解析】令船底與海底距離為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0所以SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0所以SKIPIF1<0,所以當(dāng)SKIPIF1<0或SKIPIF1<0時,SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;SKIPIF1<0在SKIPIF1<0上單調(diào)遞減.又因為SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0所以該船第一次停止卸貨的時刻為6時.16.(天津市2023屆高三三模數(shù)學(xué)試題)已知函數(shù)SKIPIF1<0,則函數(shù)SKIPIF1<0存在_____個極值點;若方程SKIPIF1<0有兩個不等實根,則SKIPIF1<0的取值范圍是___________【答案】4;SKIPIF1<0【分析】利用導(dǎo)數(shù)研究SKIPIF1<0的單調(diào)性和極值,作出SKIPIF1<0的圖象;由關(guān)于SKIPIF1<0的方程SKIPIF1<0有兩個不相等的實數(shù)根,得到函數(shù)SKIPIF1<0與SKIPIF1<0有一個交點,利用圖象法求解.【詳解】對于函數(shù)SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0.令SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0;令SKIPIF1<0,解得:SKIPIF1<0;所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.而SKIPIF1<0,SKIPIF1<0;SKIPIF1<0,SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0.令SKIPIF1<0,解得:SKIPIF1<0;令SKIPIF1<0,解得:SKIPIF1<0;所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.而SKIPIF1<0;SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.作出SKIPIF1<0的圖象如圖所示:所以函數(shù)存在4個極值點.解關(guān)于SKIPIF1<0的方程SKIPIF1<0有兩個不相等的實數(shù)根,即關(guān)于SKIPIF1<0的方程SKIPIF1<0有兩個不相等的實數(shù)根,SKIPIF1<0只有一個實數(shù)根SKIPIF1<0,所以關(guān)于SKIPIF1<0的方程SKIPIF1<0有一個非零的實數(shù)根,即函數(shù)SKIPIF1<0與SKIPIF1<0有一個交點,橫坐標(biāo)SKIPIF1<0.結(jié)合圖象可得:SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0的取值范圍是SKIPIF1<0.故答案為:4;SKIPIF1<0.四、解答題:本大題共6小題,共70分,請在答題卡指定區(qū)域內(nèi)作答,解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.(2023·山東濰坊二模)已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時,求函數(shù)SKIPIF1<0在點SKIPIF1<0處的切線方程;(2)討論函數(shù)SKIPIF1<0的極值點的個數(shù).【解析】(1)∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,而SKIPIF1<0,∴函數(shù)SKIPIF1<0在點SKIPIF1<0處的切線方程SKIPIF1<0,級SKIPIF1<0.(2)所以SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,此時SKIPIF1<0存在一個極值點SKIPIF1<0.當(dāng)SKIPIF1<0時,則SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,此時SKIPIF1<0存在兩個極值點SKIPIF1<0,SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時.SKIPIF1<0,此時SKIPIF1<0沒有極值點.當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,此時SKIPIF1<0存在兩個極值點SKIPIF1<0,SKIPIF1<0.綜上所述:當(dāng)SKIPIF1<0或SKIPIF1<0,存在兩個極值點;當(dāng)SKIPIF1<0時,存在一個極值點;當(dāng)SKIPIF1<0時,沒有極值點.18.(2023·福建莆田·統(tǒng)考二模)已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0的最小值為0,求a;(2)設(shè)函數(shù)SKIPIF1<0,若SKIPIF1<0是增函數(shù),求a的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【分析】(1)利用函數(shù)最值與極值的關(guān)系推得SKIPIF1<0為SKIPIF1<0的一個極值點,從而求得SKIPIF1<0,再代回檢驗是否滿足題意即可得解;(2)先利用同構(gòu)法得到SKIPIF1<0,再構(gòu)造函數(shù),結(jié)合(1)中結(jié)論證得SKIPIF1<0,從而得到SKIPIF1<0,由此得解.【詳解】(1)因為SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0的最小值為0,所以SKIPIF1<0為SKIPIF1<0的一個極值點,又因為SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,檢驗:當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞增,故SKIPIF1<0,滿足題意,綜上,SKIPIF1<0.(2)因為函數(shù)SKIPIF1<0是增函數(shù),所以SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以方程SKIPIF1<0有解,由(1)可知,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,等號成立,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,等號成立,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,等號成立,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的取值范圍為SKIPIF1<0.19.(2023·山東濰坊·統(tǒng)考一模)已知函數(shù)fx(1)討論fx(2)證明:當(dāng)x∈0,2吋,f【答案】(1)函數(shù)fx在0,+∞(2)證明見解析【分析】(1)求導(dǎo),再根據(jù)導(dǎo)函數(shù)的符號即可得出答案;(2)當(dāng)x∈0,2吋,fx≤gx,即證lnxelnx≤【詳解】(1)函數(shù)fx的定義域為0,+∞f'記?x=lnx所以當(dāng)0<x<1時,?'當(dāng)x>1時,?'x所以?x所以f'所以函數(shù)fx在0,+∞(2)原不等式為ex?1ln即證lnxeln設(shè)lx=x所以,當(dāng)x<1時,l'x>0,lx單調(diào)遞增;當(dāng)x所以lx令tx當(dāng)0<x<1時,t'x>0,tx單調(diào)遞增;當(dāng)所以t(x)且在x∈0,2上有l(wèi)nx<1x所以在x∈0,2時,有20.(2023·山東泰安·統(tǒng)考一模)已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)若SKIPIF1<0,討論SKIPIF1<0的單調(diào)性;(2)若當(dāng)SKIPIF1<0時,SKIPIF1<0恒成立,求SKIPIF1<0的取值范圍.【答案】(1)函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,無遞減區(qū)間(2)SKIPIF1<0【解析】【分析】(1)求出函數(shù)SKIPIF1<0的定義域,利用函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系可得出函數(shù)SKIPIF1<0的增區(qū)間和減區(qū)間;(2)設(shè)SKIPIF1<0,可知SKIPIF1<0對任意的SKIPIF1<0恒成立,對實數(shù)SKIPIF1<0的取值進行分類討論,利用導(dǎo)數(shù)分析函數(shù)SKIPIF1<0在SKIPIF1<0上的單調(diào)性,驗證SKIPIF1<0對任意的SKIPIF1<0能否恒成立,綜合可得出實數(shù)SKIPIF1<0的取值范圍.【小問1詳解】解:SKIPIF1<0的定義域為SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0單調(diào)遞增.所以,SKIPIF1<0,則SKIPIF1<0對任意的SKIPIF1<0恒成立,所以,函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,無遞減區(qū)間.【小問2詳解】解:當(dāng)SKIPIF1<0時,SKIPIF1<0恒成立等價于SKIPIF1<0在SKIPIF1<0上恒成立,設(shè)SKIPIF1<0,則SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0圖象為開口向上,對稱軸為SKIPIF1<0的拋物線的一部分,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0單調(diào)遞增,且SKIPIF1<0,所以,SKIPIF1<0,即SKIPIF1<0,則函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,又因為SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0恒成立,滿足題意;當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,所以方程SKIPIF1<0有兩相異實根,設(shè)為SKIPIF1<0、SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,又因為SKIPIF1<0,故當(dāng)SKIPIF1<0時,SKIPIF1<0,所以,SKIPIF1<0在SKIPIF1<0上不恒成立,不滿足題意.綜上,SKIPIF1<0的取值范圍為SKIPIF1<0.21.(2023·湖北·校聯(lián)考三模)已知函數(shù)SKIPIF1<0(1)求函數(shù)SKIPIF1<0的單調(diào)區(qū)間;(2)若SKIPIF1<0,在SKIPIF1<0內(nèi)存在不等實數(shù)SKIPIF1<0,使得SKIPIF1<0,證明:SKIPIF1<0.【答案】(1)答案見解析(2)證明見解析【詳解】(1)函數(shù)定義域為SKIPIF1<0,SKIPIF1<0二次函數(shù)SKIPIF1<0的對稱軸是SKIPIF1<0①若SKIPIF1<0時,在SKIPIF1<0上SKIPIF1<0,從而SKIPIF1<0,函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間是SKIPIF1<0;②若SKIPIF1<0時,SKIPIF1<0,∴函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間是SKIPIF1<0;單調(diào)遞減區(qū)間是SKIPIF1<0;(2)由對稱性不妨設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0若SKIPIF1<0,由(1)得SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,有SKIPIF1<0,SKIPIF1<0與已知條件矛盾;SKIPIF1<0時,同理可推出矛盾.SKIPIF1<0,SKIPIF1<0,
要證明:SKIPIF1<0,只需證明:SKIPIF1<0SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,∴只需證明:SKIPIF1<0又SKIPIF1<0,∴只需證明:SKIPIF1<0構(gòu)造函數(shù)SKIPIF1<0,
其中SKIPIF1<0.SKIPIF1<0SKIPIF1<0SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0SKIPIF1<0在SKIPIF1<0單調(diào)遞減,SKIPIF1<0SKIPIF1<0時,SKIPIF1<0SKIPIF1<0成立SKIPIF1<0由SKIPIF1<0在定義域內(nèi)單調(diào)遞增得,SKIPIF1<0,即SKIPIF1<0成立.22.(2023·山東青島·統(tǒng)考一模)已知函數(shù)SKIPIF1<0,圓SKIPIF1<0.(1)若SKIPIF1<0,寫出曲線SKIPIF1<0與圓C的一條公切線的方程(無需證明);(2)若曲線SKIPIF1<0與圓C恰有三條公切線.(i)求b的取值范圍;(ii)證明:曲線SKIPIF1<0上存在點SKIPIF1<0SKIPIF1<0,對任意SKIPIF1<0,SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)(i)SKIPIF1<0;(ii)證明見解析.【解析】【分析】(1)根據(jù)導(dǎo)數(shù)的幾何意義表示出f(x)的切線方程,再根據(jù)該切線與圓相切列出方程,取方程的特殊解即可得到一條共切線的方程;(2)(i)設(shè)曲線SKIPIF1<0與圓SKIPIF1<0公切線SKIPIF1<0的方程為SKIPIF1<0,根據(jù)導(dǎo)數(shù)幾何意義求出k和m的關(guān)系,在根據(jù)圓的切線方程的幾何性質(zhì)得到關(guān)于k的方程,問題轉(zhuǎn)化為討論該方程有三
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 八下期末考拔高測試卷(3)(解析版)
- 《色彩的聯(lián)想》課件
- 《廉政專題教育講座》課件
- 教育培訓(xùn)行業(yè)前臺接待總結(jié)
- 樂器店前臺崗位職責(zé)總結(jié)
- 2023年-2024年員工三級安全培訓(xùn)考試題附答案【預(yù)熱題】
- 2023年-2024年安全管理人員安全教育培訓(xùn)試題及答案典型題
- 2023年-2024年項目部治理人員安全培訓(xùn)考試題及答案高清
- 1994年安徽高考語文真題及答案
- 1993年福建高考語文真題及答案
- 醫(yī)院消毒隔離制度范文(2篇)
- 2024年01月11026經(jīng)濟學(xué)(本)期末試題答案
- 烘干煤泥合同范例
- 人教版六年級上冊數(shù)學(xué)第八單元數(shù)學(xué)廣角數(shù)與形單元試題含答案
- 2025年“三基”培訓(xùn)計劃
- 第20課 北洋軍閥統(tǒng)治時期的政治、經(jīng)濟與文化 教案
- 住房公積金稽核審計工作方案例文(4篇)
- Unit 2 My Schoolbag ALets talk(說課稿)-2024-2025學(xué)年人教PEP版英語四年級上冊
- 山東省青島實驗高中2025屆高三物理第一學(xué)期期末綜合測試試題含解析
- 物理人教版2024版八年級上冊6.2密度課件03
- 2024-2030年中國光纖傳感器行業(yè)競爭格局及發(fā)展趨勢分析報告
評論
0/150
提交評論