版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數(shù)學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.由實數(shù)組成的等比數(shù)列{an}的前n項和為Sn,則“a1>0”是“S9>S8”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.集合中含有的元素個數(shù)為()A.4 B.6 C.8 D.123.《易·系辭上》有“河出圖,洛出書”之說,河圖、洛書是中華文化,陰陽術數(shù)之源,其中河圖的排列結構是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如圖,白圈為陽數(shù),黑點為陰數(shù).若從這10個數(shù)中任取3個數(shù),則這3個數(shù)中至少有2個陽數(shù)且能構成等差數(shù)列的概率為()A. B. C. D.4.若不等式在區(qū)間內(nèi)的解集中有且僅有三個整數(shù),則實數(shù)的取值范圍是()A. B.C. D.5.若的二項展開式中的系數(shù)是40,則正整數(shù)的值為()A.4 B.5 C.6 D.76.函數(shù)的圖象大致是()A. B.C. D.7.設全集,集合,則=()A. B. C. D.8.若雙曲線:()的一個焦點為,過點的直線與雙曲線交于、兩點,且的中點為,則的方程為()A. B. C. D.9.棱長為2的正方體內(nèi)有一個內(nèi)切球,過正方體中兩條異面直線,的中點作直線,則該直線被球面截在球內(nèi)的線段的長為()A. B. C. D.110.阿波羅尼斯(約公元前262~190年)證明過這樣的命題:平面內(nèi)到兩定點距離之比為常數(shù)的點的軌跡是圓.后人將這個圓稱為阿氏圓.若平面內(nèi)兩定點,間的距離為2,動點與,的距離之比為,當,,不共線時,的面積的最大值是()A. B. C. D.11.將函數(shù)的圖像向左平移個單位得到函數(shù)的圖像,則的最小值為()A. B. C. D.12.如圖,在正四棱柱中,,分別為的中點,異面直線與所成角的余弦值為,則()A.直線與直線異面,且 B.直線與直線共面,且C.直線與直線異面,且 D.直線與直線共面,且二、填空題:本題共4小題,每小題5分,共20分。13.對于任意的正數(shù),不等式恒成立,則的最大值為_____.14.滿足線性的約束條件的目標函數(shù)的最大值為________15.在中,角,,的對邊分別為,,.若;且,則周長的范圍為__________.16.函數(shù)在內(nèi)有兩個零點,則實數(shù)的取值范圍是________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖1,在等腰梯形中,兩腰,底邊,,,是的三等分點,是的中點.分別沿,將四邊形和折起,使,重合于點,得到如圖2所示的幾何體.在圖2中,,分別為,的中點.(1)證明:平面.(2)求直線與平面所成角的正弦值.18.(12分)已知矩形中,,E,F(xiàn)分別為,的中點.沿將矩形折起,使,如圖所示.設P、Q分別為線段,的中點,連接.(1)求證:平面;(2)求二面角的余弦值.19.(12分)在中,角A,B,C的對邊分別為a,b,c,且.(1)求B;(2)若的面積為,周長為8,求b.20.(12分)在直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,點的極坐標為.(1)求的直角坐標方程和的直角坐標;(2)設與交于,兩點,線段的中點為,求.21.(12分)如圖,在多面體中,四邊形是菱形,,,,平面,,,是的中點.(Ⅰ)求證:平面平面;(ⅠⅠ)求直線與平面所成的角的正弦值.22.(10分)在平面直角坐標系中,以坐標原點為極點,軸的正半軸為極軸建立極坐標系.已知直線的參數(shù)方程為(為參數(shù)),曲線的極坐標方程為;(1)求直線的直角坐標方程和曲線的直角坐標方程;(2)若直線與曲線交點分別為,,點,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
根據(jù)等比數(shù)列的性質(zhì)以及充分條件和必要條件的定義進行判斷即可.【詳解】解:若{an}是等比數(shù)列,則,
若,則,即成立,
若成立,則,即,
故“”是“”的充要條件,
故選:C.【點睛】本題主要考查充分條件和必要條件的判斷,利用等比數(shù)列的通項公式是解決本題的關鍵.2.B【解析】解:因為集合中的元素表示的是被12整除的正整數(shù),那么可得為1,2,3,4,6,,12故選B3.C【解析】
先根據(jù)組合數(shù)計算出所有的情況數(shù),再根據(jù)“3個數(shù)中至少有2個陽數(shù)且能構成等差數(shù)列”列舉得到滿足條件的情況,由此可求解出對應的概率.【詳解】所有的情況數(shù)有:種,3個數(shù)中至少有2個陽數(shù)且能構成等差數(shù)列的情況有:,共種,所以目標事件的概率.故選:C.【點睛】本題考查概率與等差數(shù)列的綜合,涉及到背景文化知識,難度一般.求解該類問題可通過古典概型的概率求解方法進行分析;當情況數(shù)較多時,可考慮用排列數(shù)、組合數(shù)去計算.4.C【解析】
由題可知,設函數(shù),,根據(jù)導數(shù)求出的極值點,得出單調(diào)性,根據(jù)在區(qū)間內(nèi)的解集中有且僅有三個整數(shù),轉(zhuǎn)化為在區(qū)間內(nèi)的解集中有且僅有三個整數(shù),結合圖象,可求出實數(shù)的取值范圍.【詳解】設函數(shù),,因為,所以,或,因為時,,或時,,,其圖象如下:當時,至多一個整數(shù)根;當時,在內(nèi)的解集中僅有三個整數(shù),只需,,所以.故選:C.【點睛】本題考查不等式的解法和應用問題,還涉及利用導數(shù)求函數(shù)單調(diào)性和函數(shù)圖象,同時考查數(shù)形結合思想和解題能力.5.B【解析】
先化簡的二項展開式中第項,然后直接求解即可【詳解】的二項展開式中第項.令,則,∴,∴(舍)或.【點睛】本題考查二項展開式問題,屬于基礎題6.C【解析】
根據(jù)函數(shù)奇偶性可排除AB選項;結合特殊值,即可排除D選項.【詳解】∵,,∴函數(shù)為奇函數(shù),∴排除選項A,B;又∵當時,,故選:C.【點睛】本題考查了依據(jù)函數(shù)解析式選擇函數(shù)圖象,注意奇偶性及特殊值的用法,屬于基礎題.7.A【解析】
先求得全集包含的元素,由此求得集合的補集.【詳解】由解得,故,所以,故選A.【點睛】本小題主要考查補集的概念及運算,考查一元二次不等式的解法,屬于基礎題.8.D【解析】
求出直線的斜率和方程,代入雙曲線的方程,運用韋達定理和中點坐標公式,結合焦點的坐標,可得的方程組,求得的值,即可得到答案.【詳解】由題意,直線的斜率為,可得直線的方程為,把直線的方程代入雙曲線,可得,設,則,由的中點為,可得,解答,又由,即,解得,所以雙曲線的標準方程為.故選:D.【點睛】本題主要考查了雙曲線的標準方程的求解,其中解答中屬于運用雙曲線的焦點和聯(lián)立方程組,合理利用根與系數(shù)的關系和中點坐標公式是解答的關鍵,著重考查了推理與運算能力.9.C【解析】
連結并延長PO,交對棱C1D1于R,則R為對棱的中點,取MN的中點H,則OH⊥MN,推導出OH∥RQ,且OH=RQ=,由此能求出該直線被球面截在球內(nèi)的線段的長.【詳解】如圖,MN為該直線被球面截在球內(nèi)的線段連結并延長PO,交對棱C1D1于R,則R為對棱的中點,取MN的中點H,則OH⊥MN,∴OH∥RQ,且OH=RQ=,∴MH===,∴MN=.故選:C.【點睛】本題主要考查該直線被球面截在球內(nèi)的線段的長的求法,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,是中檔題.10.A【解析】
根據(jù)平面內(nèi)兩定點,間的距離為2,動點與,的距離之比為,利用直接法求得軌跡,然后利用數(shù)形結合求解.【詳解】如圖所示:設,,,則,化簡得,當點到(軸)距離最大時,的面積最大,∴面積的最大值是.故選:A.【點睛】本題主要考查軌跡的求法和圓的應用,還考查了數(shù)形結合的思想和運算求解的能力,屬于中檔題.11.B【解析】
根據(jù)三角函數(shù)的平移求出函數(shù)的解析式,結合三角函數(shù)的性質(zhì)進行求解即可.【詳解】將函數(shù)的圖象向左平移個單位,得到,此時與函數(shù)的圖象重合,則,即,,當時,取得最小值為,故選:.【點睛】本題主要考查三角函數(shù)的圖象和性質(zhì),利用三角函數(shù)的平移關系求出解析式是解決本題的關鍵.12.B【解析】
連接,,,,由正四棱柱的特征可知,再由平面的基本性質(zhì)可知,直線與直線共面.,同理易得,由異面直線所成的角的定義可知,異面直線與所成角為,然后再利用余弦定理求解.【詳解】如圖所示:連接,,,,由正方體的特征得,所以直線與直線共面.由正四棱柱的特征得,所以異面直線與所成角為.設,則,則,,,由余弦定理,得.故選:B【點睛】本題主要考查異面直線的定義及所成的角和平面的基本性質(zhì),還考查了推理論證和運算求解的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據(jù)均為正數(shù),等價于恒成立,令,轉(zhuǎn)化為恒成立,利用基本不等式求解最值.【詳解】由題均為正數(shù),不等式恒成立,等價于恒成立,令則,當且僅當即時取得等號,故的最大值為.故答案為:【點睛】此題考查不等式恒成立求參數(shù)的取值范圍,關鍵在于合理進行等價變形,此題可以構造二次函數(shù)求解,也可利用基本不等式求解.14.1【解析】
作出不等式組表示的平面區(qū)域,將直線進行平移,利用的幾何意義,可求出目標函數(shù)的最大值。【詳解】由,得,作出可行域,如圖所示:平移直線,由圖像知,當直線經(jīng)過點時,截距最小,此時取得最大值。由,解得,代入直線,得。【點睛】本題主要考查簡單的線性規(guī)劃問題的解法——平移法。15.【解析】
先求角,再用余弦定理找到邊的關系,再用基本不等式求的范圍即可.【詳解】解:所以三角形周長故答案為:【點睛】考查正余弦定理、基本不等式的應用以及三條線段構成三角形的條件;基礎題.16.【解析】
設,,設,函數(shù)為奇函數(shù),,函數(shù)單調(diào)遞增,,畫出簡圖,如圖所示,根據(jù),解得答案.【詳解】,設,,則.原函數(shù)等價于函數(shù),即有兩個解.設,則,函數(shù)為奇函數(shù).,函數(shù)單調(diào)遞增,,,.當時,易知不成立;當時,根據(jù)對稱性,考慮時的情況,,畫出簡圖,如圖所示,根據(jù)圖像知:故,即,根據(jù)對稱性知:.故答案為:.【點睛】本題考查了函數(shù)零點問題,意在考查學生的轉(zhuǎn)化能力和計算能力,畫出圖像是解題的關鍵.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)證明見解析(2)【解析】
(1)先證,再證,由可得平面,從而推出平面;(2)建立空間直角坐標系,求出平面的法向量與,坐標代入線面角的正弦值公式即可得解.【詳解】(1)證明:連接,,由圖1知,四邊形為菱形,且,所以是正三角形,從而.同理可證,,所以平面.又,所以平面,因為平面,所以平面平面.易知,且為的中點,所以,所以平面.(2)解:由(1)可知,,且四邊形為正方形.設的中點為,以為原點,以,,所在直線分別為,,軸,建立空間直角坐標系,則,,,,,所以,,.設平面的法向量為,由得取.設直線與平面所成的角為,所以,所以直線與平面所成角的正弦值為.【點睛】本題考查線面垂直的證明,直線與平面所成的角,要求一定的空間想象能力、運算求解能力和推理論證能力,屬于基礎題.18.(1)證明見解析(2)【解析】
(1)取中點R,連接,,可知中,且,由Q是中點,可得則有且,即四邊形是平行四邊形,則有,即證得平面.(2)建立空間直角坐標系,求得半平面的法向量:,然后利用空間向量的相關結論可求得二面角的余弦值.【詳解】(1)取中點R,連接,,則在中,,且,又Q是中點,所以,而且,所以,所以四邊形是平行四邊形,所以,又平面,平面,所以平面.(2)在平面內(nèi)作交于點G,以E為原點,,,分別為x,y,x軸,建立如圖所示的空間直角坐標系,則各點坐標為,,,所以,,設平面的一個法向量為,則即,取,得,又平面的一個法向量為,所以.因此,二面角的余弦值為【點睛】本題考查線面平行的判定,考查利用空間向量求解二面角,考查邏輯推理能力及運算求解能力,難度一般.19.(1);(2)【解析】
(1)通過正弦定理和內(nèi)角和定理化簡,再通過二倍角公式即可求出;(2)通過三角形面積公式和三角形的周長為8,求出b的表達式后即可求出b的值.【詳解】(1)由三角形內(nèi)角和定理及誘導公式,得,結合正弦定理,得,由及二倍角公式,得,即,故;(2)由題設,得,從而,由余弦定理,得,即,又,所以,解得.【點睛】本題綜合考查了正余弦定理,倍角公式,三角形面積公式,屬于基礎題.20.(1),(2)【解析】
(1)利用互化公式把曲線C化成直角坐標方程,把點P的極坐標化成直角坐標;(2)把直線l的參數(shù)方程的標準形式代入曲線C的直角坐標方程,根據(jù)韋達定理以及參數(shù)t的幾何意義可得.【詳解】(1)由ρ2得ρ2+ρ2sin2θ=2,將ρ2=x2+y2,y=ρsinθ代入上式并整理得曲線C的直角坐標方程為y2=1,設點P的直角坐標為(x,y),因為P的極坐標為(,),所以x=ρcosθcos1,y=ρsinθsin1,所以點P的直角坐標為(1,1).(2)將代入y2=1,并整理
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 川北醫(yī)學院《組合與運籌》2023-2024學年第二學期期末試卷
- 北京體育大學《單片機原理及接口技術》2023-2024學年第二學期期末試卷
- 北京師范大學《歷史研究基礎》2023-2024學年第二學期期末試卷
- 北京社會管理職業(yè)學院《食品微生物學(含食品微生物檢驗)》2023-2024學年第二學期期末試卷
- 北京培黎職業(yè)學院《工程安全與環(huán)境保護》2023-2024學年第二學期期末試卷
- 北京勞動保障職業(yè)學院《水污染控制》2023-2024學年第二學期期末試卷
- 水資源保護與綠色水處理技術探索
- 環(huán)??萍寂c未來城市規(guī)劃的融合
- 現(xiàn)代商業(yè)環(huán)境下的生產(chǎn)效率提升策略探討
- 《一塊奶酪》說課稿2024-2025學年統(tǒng)編版語文三年級上冊
- 2024年常德職業(yè)技術學院單招職業(yè)適應性測試題庫
- 山東省濟南市2023-2024學年高二上學期期末考試化學試題 附答案
- 2025 年福建省中考語文試題:作文試題及范文
- 短視頻運營績效考核表KPI-企業(yè)管理
- 【譯林】九下英語單詞默寫表
- IEC 62368-1標準解讀-中文
- 15J403-1-樓梯欄桿欄板(一)
- QC課題提高金剛砂地面施工一次合格率
- 2024年發(fā)電廠交接班管理制度(二篇)
- 《數(shù)學課程標準》義務教育2022年修訂版(原版)
- 各種標本采集的技術-痰標本的采集(護理技術)
評論
0/150
提交評論