版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數(shù)學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.五行學說是華夏民族創(chuàng)造的哲學思想,是華夏文明重要組成部分.古人認為,天下萬物皆由金、木、水、火、土五類元素組成,如圖,分別是金、木、水、火、土彼此之間存在的相生相克的關系.若從5類元素中任選2類元素,則2類元素相生的概率為()A. B. C. D.2.已知定義在上的奇函數(shù)和偶函數(shù)滿足(且),若,則函數(shù)的單調遞增區(qū)間為()A. B. C. D.3.若某幾何體的三視圖如圖所示,則該幾何體的表面積為()A.240 B.264 C.274 D.2824.函數(shù)在上為增函數(shù),則的值可以是()A.0 B. C. D.5.若復數(shù)z滿足,則復數(shù)z在復平面內對應的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.已知函數(shù)則函數(shù)的圖象的對稱軸方程為()A. B.C. D.7.拋物線的準線與軸的交點為點,過點作直線與拋物線交于、兩點,使得是的中點,則直線的斜率為()A. B. C.1 D.8.已知函數(shù)是定義在上的偶函數(shù),當時,,則,,的大小關系為()A. B. C. D.9.一個封閉的棱長為2的正方體容器,當水平放置時,如圖,水面的高度正好為棱長的一半.若將該正方體繞下底面(底面與水平面平行)的某條棱任意旋轉,則容器里水面的最大高度為()A. B. C. D.10.趙爽是我國古代數(shù)學家、天文學家,大約在公元222年,趙爽為《周髀算經》一書作序時,介紹了“勾股圓方圖”,亦稱“趙爽弦圖”(以弦為邊長得到的正方形是由4個全等的直角三角形再加上中間的一個小正方形組成的).類比“趙爽弦圖”.可類似地構造如下圖所示的圖形,它是由3個全等的三角形與中間的一個小等邊三角形拼成一個大等邊三角形.設,若在大等邊三角形中隨機取一點,則此點取自小等邊三角形(陰影部分)的概率是()A. B. C. D.11.若集合,,則A. B. C. D.12.己知,,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),若,則實數(shù)的取值范圍為__________.14.數(shù)學家狄里克雷對數(shù)論,數(shù)學分析和數(shù)學物理有突出貢獻,是解析數(shù)論的創(chuàng)始人之一.函數(shù),稱為狄里克雷函數(shù).則關于有以下結論:①的值域為;②;③;④其中正確的結論是_______(寫出所有正確的結論的序號)15.已知,在方向上的投影為,則與的夾角為_________.16.某中學數(shù)學競賽培訓班共有10人,分為甲、乙兩個小組,在一次階段測試中兩個小組成績的莖葉圖如圖所示,若甲組5名同學成績的平均數(shù)為81,乙組5名同學成績的中位數(shù)為73,則x-y的值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系xOy中,直線的參數(shù)方程為(t為參數(shù),).以坐標原點為極點,x軸的非負半軸為極軸,建立極坐標系,曲線C的極坐標方程為.(l)求直線的普通方程和曲線C的直角坐標方程:(2)若直線與曲線C相交于A,B兩點,且.求直線的方程.18.(12分)如圖,在正四棱錐中,底面正方形的對角線交于點且(1)求直線與平面所成角的正弦值;(2)求銳二面角的大?。?9.(12分)已知,,(1)求的最小正周期及單調遞增區(qū)間;(2)已知銳角的內角,,的對邊分別為,,,且,,求邊上的高的最大值.20.(12分)已知,函數(shù)有最小值7.(1)求的值;(2)設,,求證:.21.(12分)在直角坐標系中,以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的參數(shù)方程為(為參數(shù)),直線經過點且傾斜角為.(1)求曲線的極坐標方程和直線的參數(shù)方程;(2)已知直線與曲線交于,滿足為的中點,求.22.(10分)已知不等式對于任意的恒成立.(1)求實數(shù)m的取值范圍;(2)若m的最大值為M,且正實數(shù)a,b,c滿足.求證.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
列舉出金、木、水、火、土任取兩個的所有結果共10種,其中2類元素相生的結果有5種,再根據(jù)古典概型概率公式可得結果.【詳解】金、木、水、火、土任取兩類,共有:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土10種結果,其中兩類元素相生的有火木、火土、木水、水金、金土共5結果,所以2類元素相生的概率為,故選A.【點睛】本題主要考查古典概型概率公式的應用,屬于基礎題,利用古典概型概率公式求概率時,找準基本事件個數(shù)是解題的關鍵,基本亊件的探求方法有(1)枚舉法:適合給定的基本事件個數(shù)較少且易一一列舉出的;(2)樹狀圖法:適合于較為復雜的問題中的基本亊件的探求.在找基本事件個數(shù)時,一定要按順序逐個寫出:先,….,再,…..依次….…這樣才能避免多寫、漏寫現(xiàn)象的發(fā)生.2.D【解析】
根據(jù)函數(shù)的奇偶性用方程法求出的解析式,進而求出,再根據(jù)復合函數(shù)的單調性,即可求出結論.【詳解】依題意有,①,②①②得,又因為,所以,在上單調遞增,所以函數(shù)的單調遞增區(qū)間為.故選:D.【點睛】本題考查求函數(shù)的解析式、函數(shù)的性質,要熟記復合函數(shù)單調性判斷方法,屬于中檔題.3.B【解析】
將三視圖還原成幾何體,然后分別求出各個面的面積,得到答案.【詳解】由三視圖可得,該幾何體的直觀圖如圖所示,延長交于點,其中,,,所以表面積.故選B項.【點睛】本題考查三視圖還原幾何體,求組合體的表面積,屬于中檔題4.D【解析】
依次將選項中的代入,結合正弦、余弦函數(shù)的圖象即可得到答案.【詳解】當時,在上不單調,故A不正確;當時,在上單調遞減,故B不正確;當時,在上不單調,故C不正確;當時,在上單調遞增,故D正確.故選:D【點睛】本題考查正弦、余弦函數(shù)的單調性,涉及到誘導公式的應用,是一道容易題.5.A【解析】
化簡復數(shù),求得,得到復數(shù)在復平面對應點的坐標,即可求解.【詳解】由題意,復數(shù)z滿足,可得,所以復數(shù)在復平面內對應點的坐標為位于第一象限故選:A.【點睛】本題主要考查了復數(shù)的運算,以及復數(shù)的幾何表示方法,其中解答中熟記復數(shù)的運算法則,結合復數(shù)的表示方法求解是解答的關鍵,著重考查了推理與計算能力,屬于基礎題.6.C【解析】
,將看成一個整體,結合的對稱性即可得到答案.【詳解】由已知,,令,得.故選:C.【點睛】本題考查余弦型函數(shù)的對稱性的問題,在處理余弦型函數(shù)的性質時,一般采用整體法,結合三角函數(shù)的性質,是一道容易題.7.B【解析】
設點、,設直線的方程為,由題意得出,將直線的方程與拋物線的方程聯(lián)立,列出韋達定理,結合可求得的值,由此可得出直線的斜率.【詳解】由題意可知點,設點、,設直線的方程為,由于點是的中點,則,將直線的方程與拋物線的方程聯(lián)立得,整理得,由韋達定理得,得,,解得,因此,直線的斜率為.故選:B.【點睛】本題考查直線斜率的求解,考查直線與拋物線的綜合問題,涉及韋達定理設而不求法的應用,考查運算求解能力,屬于中等題.8.C【解析】
根據(jù)函數(shù)的奇偶性得,再比較的大小,根據(jù)函數(shù)的單調性可得選項.【詳解】依題意得,,當時,,因為,所以在上單調遞增,又在上單調遞增,所以在上單調遞增,,即,故選:C.【點睛】本題考查函數(shù)的奇偶性的應用、冪、指、對的大小比較,以及根據(jù)函數(shù)的單調性比較大小,屬于中檔題.9.B【解析】
根據(jù)已知可知水面的最大高度為正方體面對角線長的一半,由此得到結論.【詳解】正方體的面對角線長為,又水的體積是正方體體積的一半,且正方體繞下底面(底面與水平面平行)的某條棱任意旋轉,所以容器里水面的最大高度為面對角線長的一半,即最大水面高度為,故選B.【點睛】本題考查了正方體的幾何特征,考查了空間想象能力,屬于基礎題.10.A【解析】
根據(jù)幾何概率計算公式,求出中間小三角形區(qū)域的面積與大三角形面積的比值即可.【詳解】在中,,,,由余弦定理,得,所以.所以所求概率為.故選A.【點睛】本題考查了幾何概型的概率計算問題,是基礎題.11.C【解析】
解一元次二次不等式得或,利用集合的交集運算求得.【詳解】因為或,,所以,故選C.【點睛】本題考查集合的交運算,屬于容易題.12.B【解析】
先將三個數(shù)通過指數(shù),對數(shù)運算變形,再判斷.【詳解】因為,,所以,故選:B.【點睛】本題主要考查指數(shù)、對數(shù)的大小比較,還考查推理論證能力以及化歸與轉化思想,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
畫圖分析可得函數(shù)是偶函數(shù),且在上單調遞減,利用偶函數(shù)性質和單調性可解.【詳解】作出函數(shù)的圖如下所示,觀察可知,函數(shù)為偶函數(shù),且在上單調遞增,在上單調遞減,故,故實數(shù)的取值范圍為.故答案為:【點睛】本題考查利用函數(shù)奇偶性及單調性解不等式.函數(shù)奇偶性的常用結論:(1)如果函數(shù)是偶函數(shù),那么.(2)奇函數(shù)在兩個對稱的區(qū)間上具有相同的單調性;偶函數(shù)在兩個對稱的區(qū)間上具有相反的單調性.14.②【解析】
根據(jù)新定義,結合實數(shù)的性質即可判斷①②③,由定義求得比小的有理數(shù)個數(shù),即可確定④.【詳解】對于①,由定義可知,當為有理數(shù)時;當為無理數(shù)時,則值域為,所以①錯誤;對于②,因為有理數(shù)的相反數(shù)還是有理數(shù),無理數(shù)的相反數(shù)還是無理數(shù),所以滿足,所以②正確;對于③,因為,當為無理數(shù)時,可以是有理數(shù),也可以是無理數(shù),所以③錯誤;對于④,由定義可知,所以④錯誤;綜上可知,正確的為②.故答案為:②.【點睛】本題考查了新定義函數(shù)的綜合應用,正確理解題意是解決此類問題的關鍵,屬于中檔題.15.【解析】
由向量投影的定義可求得兩向量夾角的余弦值,從而得角的大?。驹斀狻吭诜较蛏系耐队盀?,即夾角為.故答案為:.【點睛】本題考查求向量的夾角,掌握向量投影的定義是解題關鍵.16.【解析】
根據(jù)莖葉圖中的數(shù)據(jù),結合平均數(shù)與中位數(shù)的概念,求出x、y的值.【詳解】根據(jù)莖葉圖中的數(shù)據(jù),得:甲班5名同學成績的平均數(shù)為,解得;又乙班5名同學的中位數(shù)為73,則;.故答案為:.【點睛】本題考查莖葉圖及根據(jù)莖葉圖計算中位數(shù)、平均數(shù),考查數(shù)據(jù)分析能力,屬于簡單題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)見解析(2)【解析】
(1)將消去參數(shù)t可得直線的普通方程,利用x=ρcosθ,可將極坐標方程轉為直角坐標方程.(2)利用直線被圓截得的弦長公式計算可得答案.【詳解】(1)由消去參數(shù)t得(),由得曲線C的直角坐標方程為:(2)由得,圓心為(1,0),半徑為2,圓心到直線的距離為,∴,即,整理得,∵,∴,,,所以直線l的方程為:.【點睛】本題考查參數(shù)方程,極坐標方程與直角坐標方程之間的互化,考查直線被圓截得的弦長公式的應用,考查分析能力與計算能力,屬于基礎題.18.(1);(2).【解析】
(1)以分別為軸,軸,軸,建立空間直角坐標系,設底面正方形邊長為再求解與平面的法向量,繼而求得直線與平面所成角的正弦值即可.(2)分別求解平面與平面的法向量,再求二面角的余弦值判斷二面角大小即可.【詳解】解:在正四棱錐中,底面正方形的對角線交于點所以平面取的中點的中點所以兩兩垂直,故以點為坐標原點,以分別為軸,軸,軸,建立空間直角坐標系.設底面正方形邊長為因為所以所以,所以,設平面的法向量是,因為,,所以,,取則,所以所以,所以直線與平面所成角的正弦值為.設平面的法向量是,因為,,所以,取則所以,由知平面的法向量是,所以所以,所以銳二面角的大小為.【點睛】本題主要考查了建立平面直角坐標系求解線面夾角以及二面角的問題,屬于中檔題.19.(1)的最小正周期為:;函數(shù)單調遞增區(qū)間為:;(2).【解析】
(1)根據(jù)誘導公式,結合二倍角的正弦公式、輔助角公式把函數(shù)的解析式化簡成余弦型函數(shù)解析式形式,利用余弦型函數(shù)的最小正周期公式和單調性進行求解即可;(2)由(1)結合,求出的大小,再根據(jù)三角形面積公式,結合余弦定理和基本不等式進行求解即可.【詳解】(1)的最小正周期為:;當時,即當時,函數(shù)單調遞增,所以函數(shù)單調遞增區(qū)間為:;(2)因為,所以設邊上的高為,所以有,由余弦定理可知:(當用僅當時,取等號),所以,因此邊上的高的最大值.【點睛】本題考查了正弦的二倍角公式、誘導公式、輔助角公式,考查了余弦定理、三角形面積公式,考查了基本不等式的應用,考查了數(shù)學運算能力.20.(1).(2)見解析【解析】
(1)由絕對值三解不等式可得,所以當時,,即可求出參數(shù)的值;(2)由,可得,再利用基本不等式求出的最小值,即可得證;【詳解】解:(1)∵,∴當時,,解得.(2)∵,∴,∴,當且僅當,即,時,等號成立.∴.【點睛】本題主要考
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《安全感悟分享》課件
- 《職業(yè)適應與發(fā)展》課件
- 《生產安全事故應急》課件
- 2024教師發(fā)言稿(34篇)
- 藝術與人生和社會的關系
- 單位管理制度匯編大全【人事管理】
- 單位管理制度分享合集【人員管理篇】十篇
- 單位管理制度分享大合集【人員管理】十篇
- 單位管理制度范文大合集【員工管理篇】十篇
- 單位管理制度呈現(xiàn)大全【人員管理】
- 廣東省惠州市博羅縣2022-2023學年六年級上學期期末數(shù)學試卷
- 2023年04月2023年外交學院招考聘用筆試參考題庫附答案解析
- 中國自身免疫性腦炎診治專家共識2023年版
- 單片機與微機原理及應用第二版張迎新習題答案
- 深部真菌病課件
- 用戶界面測試
- 人工氣道濕化的護理培訓課件
- 讀書分享-給教師的一百條建議
- GB/T 4269.3-2000農林拖拉機和機械、草坪和園藝動力機械操作者操縱機構和其他顯示裝置用符號第3部分:草坪和園藝動力機械用符號
- GB/T 11618.1-2008銅管接頭第1部分:釬焊式管件
- 開工復工第一課
評論
0/150
提交評論