貴州省遵義市2021-2022學(xué)年高考數(shù)學(xué)倒計時模擬卷含解析_第1頁
貴州省遵義市2021-2022學(xué)年高考數(shù)學(xué)倒計時模擬卷含解析_第2頁
貴州省遵義市2021-2022學(xué)年高考數(shù)學(xué)倒計時模擬卷含解析_第3頁
貴州省遵義市2021-2022學(xué)年高考數(shù)學(xué)倒計時模擬卷含解析_第4頁
貴州省遵義市2021-2022學(xué)年高考數(shù)學(xué)倒計時模擬卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2021-2022高考數(shù)學(xué)模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知在平面直角坐標系中,圓:與圓:交于,兩點,若,則實數(shù)的值為()A.1 B.2 C.-1 D.-22.向量,,且,則()A. B. C. D.3.若、滿足約束條件,則的最大值為()A. B. C. D.4.下列函數(shù)中既關(guān)于直線對稱,又在區(qū)間上為增函數(shù)的是()A.. B.C. D.5.已知定義在上的函數(shù),若函數(shù)為偶函數(shù),且對任意,,都有,若,則實數(shù)的取值范圍是()A. B. C. D.6.已知函數(shù)滿足,當(dāng)時,,則()A.或 B.或C.或 D.或7.已知四棱錐中,平面,底面是邊長為2的正方形,,為的中點,則異面直線與所成角的余弦值為()A. B. C. D.8.已知向量與的夾角為,,,則()A. B.0 C.0或 D.9.設(shè)平面與平面相交于直線,直線在平面內(nèi),直線在平面內(nèi),且則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分不必要條件10.設(shè)實數(shù)、滿足約束條件,則的最小值為()A.2 B.24 C.16 D.1411.?dāng)?shù)列滿足,且,,則()A. B.9 C. D.712.是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.記等差數(shù)列和的前項和分別為和,若,則______.14.設(shè)隨機變量服從正態(tài)分布,若,則的值是______.15.已知(且)有最小值,且最小值不小于1,則的取值范圍為__________.16.已知拋物線的焦點和橢圓的右焦點重合,直線過拋物線的焦點與拋物線交于、兩點和橢圓交于、兩點,為拋物線準線上一動點,滿足,,當(dāng)面積最大時,直線的方程為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列為公差不為零的等差數(shù)列,是數(shù)列的前項和,且、、成等比數(shù)列,.設(shè)數(shù)列的前項和為,且滿足.(1)求數(shù)列、的通項公式;(2)令,證明:.18.(12分)某商場舉行有獎促銷活動,顧客購買每滿元的商品即可抽獎一次.抽獎規(guī)則如下:抽獎?wù)邤S各面標有點數(shù)的正方體骰子次,若擲得點數(shù)大于,則可繼續(xù)在抽獎箱中抽獎;否則獲得三等獎,結(jié)束抽獎,已知抽獎箱中裝有個紅球與個白球,抽獎?wù)邚南渲腥我饷鰝€球,若個球均為紅球,則獲得一等獎,若個球為個紅球和個白球,則獲得二等獎,否則,獲得三等獎(抽獎箱中的所有小球,除顏色外均相同).若,求顧客參加一次抽獎活動獲得三等獎的概率;若一等獎可獲獎金元,二等獎可獲獎金元,三等獎可獲獎金元,記顧客一次抽獎所獲得的獎金為,若商場希望的數(shù)學(xué)期望不超過元,求的最小值.19.(12分)已知函數(shù).(1)當(dāng)(為自然對數(shù)的底數(shù))時,求函數(shù)的極值;(2)為的導(dǎo)函數(shù),當(dāng),時,求證:.20.(12分)如圖所示,在三棱柱中,為等邊三角形,,,平面,是線段上靠近的三等分點.(1)求證:;(2)求直線與平面所成角的正弦值.21.(12分)在四棱錐中,底面是平行四邊形,底面.(1)證明:;(2)求二面角的正弦值.22.(10分)如圖,在四棱柱中,底面是正方形,平面平面,,.過頂點,的平面與棱,分別交于,兩點.(Ⅰ)求證:;(Ⅱ)求證:四邊形是平行四邊形;(Ⅲ)若,試判斷二面角的大小能否為?說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

由可得,O在AB的中垂線上,結(jié)合圓的性質(zhì)可知O在兩個圓心的連線上,從而可求.【詳解】因為,所以O(shè)在AB的中垂線上,即O在兩個圓心的連線上,,,三點共線,所以,得,故選D.【點睛】本題主要考查圓的性質(zhì)應(yīng)用,幾何性質(zhì)的轉(zhuǎn)化是求解的捷徑.2.D【解析】

根據(jù)向量平行的坐標運算以及誘導(dǎo)公式,即可得出答案.【詳解】故選:D【點睛】本題主要考查了由向量平行求參數(shù)以及誘導(dǎo)公式的應(yīng)用,屬于中檔題.3.C【解析】

作出不等式組所表示的可行域,平移直線,找出直線在軸上的截距最大時對應(yīng)的最優(yōu)解,代入目標函數(shù)計算即可.【詳解】作出滿足約束條件的可行域如圖陰影部分(包括邊界)所示.由,得,平移直線,當(dāng)直線經(jīng)過點時,該直線在軸上的截距最大,此時取最大值,即.故選:C.【點睛】本題考查簡單的線性規(guī)劃問題,考查線性目標函數(shù)的最值,一般利用平移直線的方法找到最優(yōu)解,考查數(shù)形結(jié)合思想的應(yīng)用,屬于基礎(chǔ)題.4.C【解析】

根據(jù)函數(shù)的對稱性和單調(diào)性的特點,利用排除法,即可得出答案.【詳解】A中,當(dāng)時,,所以不關(guān)于直線對稱,則錯誤;B中,,所以在區(qū)間上為減函數(shù),則錯誤;D中,,而,則,所以不關(guān)于直線對稱,則錯誤;故選:C.【點睛】本題考查函數(shù)基本性質(zhì),根據(jù)函數(shù)的解析式判斷函數(shù)的對稱性和單調(diào)性,屬于基礎(chǔ)題.5.A【解析】

根據(jù)題意,分析可得函數(shù)的圖象關(guān)于對稱且在上為減函數(shù),則不等式等價于,解得的取值范圍,即可得答案.【詳解】解:因為函數(shù)為偶函數(shù),所以函數(shù)的圖象關(guān)于對稱,因為對任意,,都有,所以函數(shù)在上為減函數(shù),則,解得:.即實數(shù)的取值范圍是.故選:A.【點睛】本題考查函數(shù)的對稱性與單調(diào)性的綜合應(yīng)用,涉及不等式的解法,屬于綜合題.6.C【解析】

簡單判斷可知函數(shù)關(guān)于對稱,然后根據(jù)函數(shù)的單調(diào)性,并計算,結(jié)合對稱性,可得結(jié)果.【詳解】由,可知函數(shù)關(guān)于對稱當(dāng)時,,可知在單調(diào)遞增則又函數(shù)關(guān)于對稱,所以且在單調(diào)遞減,所以或,故或所以或故選:C【點睛】本題考查函數(shù)的對稱性以及單調(diào)性求解不等式,抽象函數(shù)給出式子的意義,比如:,,考驗分析能力,屬中檔題.7.B【解析】

由題意建立空間直角坐標系,表示出各點坐標后,利用即可得解.【詳解】平面,底面是邊長為2的正方形,如圖建立空間直角坐標系,由題意:,,,,,為的中點,.,,,異面直線與所成角的余弦值為即為.故選:B.【點睛】本題考查了空間向量的應(yīng)用,考查了空間想象能力,屬于基礎(chǔ)題.8.B【解析】

由數(shù)量積的定義表示出向量與的夾角為,再由,代入表達式中即可求出.【詳解】由向量與的夾角為,得,所以,又,,,,所以,解得.故選:B【點睛】本題主要考查向量數(shù)量積的運算和向量的模長平方等于向量的平方,考查學(xué)生的計算能力,屬于基礎(chǔ)題.9.A【解析】

試題分析:α⊥β,b⊥m又直線a在平面α內(nèi),所以a⊥b,但直線不一定相交,所以“α⊥β”是“a⊥b”的充分不必要條件,故選A.考點:充分條件、必要條件.10.D【解析】

做出滿足條件的可行域,根據(jù)圖形即可求解.【詳解】做出滿足的可行域,如下圖陰影部分,根據(jù)圖象,當(dāng)目標函數(shù)過點時,取得最小值,由,解得,即,所以的最小值為.故選:D.【點睛】本題考查二元一次不等式組表示平面區(qū)域,利用數(shù)形結(jié)合求線性目標函數(shù)的最值,屬于基礎(chǔ)題.11.A【解析】

先由題意可得數(shù)列為等差數(shù)列,再根據(jù),,可求出公差,即可求出.【詳解】數(shù)列滿足,則數(shù)列為等差數(shù)列,,,,,,,故選:.【點睛】本題主要考查了等差數(shù)列的性質(zhì)和通項公式的求法,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.12.B【解析】

分別判斷充分性和必要性得到答案.【詳解】所以(逆否命題)必要性成立當(dāng),不充分故是必要不充分條件,答案選B【點睛】本題考查了充分必要條件,屬于簡單題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

結(jié)合等差數(shù)列的前項和公式,可得,求解即可.【詳解】由題意,,,因為,所以.故答案為:.【點睛】本題考查了等差數(shù)列的前項和公式及等差中項的應(yīng)用,考查了學(xué)生的計算求解能力,屬于基礎(chǔ)題.14.1【解析】

由題得,解不等式得解.【詳解】因為,所以,所以c=1.故答案為1【點睛】本題主要考查正態(tài)分布的圖像和性質(zhì),意在考查學(xué)生對該知識的理解掌握水平和分析推理能力.15.【解析】

真數(shù)有最小值,根據(jù)已知可得的范圍,求出函數(shù)的最小值,建立關(guān)于的不等量關(guān)系,求解即可.【詳解】,且(且)有最小值,,的取值范圍為.故答案為:.【點睛】本題考查對數(shù)型復(fù)合函數(shù)的性質(zhì),熟練掌握基本初等函數(shù)的性質(zhì)是解題關(guān)鍵,屬于基礎(chǔ)題.16.【解析】

根據(jù)均值不等式得到,,根據(jù)等號成立條件得到直線的傾斜角為,計算得到直線方程.【詳解】由橢圓,可知,,,,,,,(當(dāng)且僅當(dāng),等號成立),,,,,直線的傾斜角為,直線的方程為.故答案為:.【點睛】本題考查了拋物線,橢圓,直線的綜合應(yīng)用,意在考查學(xué)生的計算能力和綜合應(yīng)用能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1),(2)證明見解析【解析】

(1)利用首項和公差構(gòu)成方程組,從而求解出的通項公式;由的通項公式求解出的表達式,根據(jù)以及,求解出的通項公式;(2)利用錯位相減法求解出的前項和,根據(jù)不等關(guān)系證明即可.【詳解】(1)設(shè)首項為,公差為.由題意,得,解得,∴,∴,∴當(dāng)時,∴,.當(dāng)時,滿足上式.∴(2),令數(shù)列的前項和為.兩式相減得∴恒成立,得證.【點睛】本題考查等差數(shù)列、等比數(shù)列的綜合應(yīng)用,難度一般.(1)當(dāng)用求解的通項公式時,一定要注意驗證是否成立;(2)當(dāng)一個數(shù)列符合等差乘以等比的形式,優(yōu)先考慮采用錯位相減法進行求和,同時注意對于錯位的理解.18.;.【解析】

設(shè)顧客獲得三等獎為事件,因為顧客擲得點數(shù)大于的概率為,顧客擲得點數(shù)小于,然后抽將得三等獎的概率為,求出;由題意可知,隨機變量的可能取值為,,,相應(yīng)求出概率,求出期望,化簡得,由題意可知,,即,求出的最小值.【詳解】設(shè)顧客獲得三等獎為事件,因為顧客擲得點數(shù)大于的概率為,顧客擲得點數(shù)小于,然后抽將得三等獎的概率為,所以;由題意可知,隨機變量的可能取值為,,,且,,,所以隨機變量的數(shù)學(xué)期望,,化簡得,由題意可知,,即,化簡得,因為,解得,即的最小值為.【點睛】本題主要考查概率和期望的求法,屬于常考題.19.(1)極大值,極小值;(2)詳見解析.【解析】

首先確定函數(shù)的定義域和;(1)當(dāng)時,根據(jù)的正負可確定單調(diào)性,進而確定極值點,代入可求得極值;(2)通過分析法可將問題轉(zhuǎn)化為證明,設(shè),令,利用導(dǎo)數(shù)可證得,進而得到結(jié)論.【詳解】由題意得:定義域為,,(1)當(dāng)時,,當(dāng)和時,;當(dāng)時,,在,上單調(diào)遞增,在上單調(diào)遞減,極大值為,極小值為.(2)要證:,即證:,即證:,化簡可得:.,,即證:,設(shè),令,則,在上單調(diào)遞增,,則由,從而有:.【點睛】本題考查導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用,涉及到函數(shù)極值的求解、利用導(dǎo)數(shù)證明不等式的問題;本題不等式證明的關(guān)鍵是能夠?qū)⒍鄠€變量的問題轉(zhuǎn)化為一個變量的問題,通過構(gòu)造函數(shù)的方式將問題轉(zhuǎn)化為函數(shù)最值的求解問題.20.(1)證明見解析(2)【解析】

(1)由,故,所以四邊形為菱形,再通過,證得,所以四邊形為正方形,得到.(2)根據(jù)(1)的論證,建立空間直角坐標,設(shè)平面的法向量為,由求得,再由,利用線面角的向量法公式求解.【詳解】(1)因為,故,所以四邊形為菱形,而平面,故.因為,故,故,即四邊形為正方形,故.(2)依題意,.在正方形中,,故以為原點,所在直線分別為、、軸,建立如圖所示的空間直角坐標系;如圖所示:不紡設(shè),則,又因為,所以.所以.設(shè)平面的法向量為,則,即,令,則.于是.又因為,設(shè)直線與平面所成角為,則,所以直線與平面所成角的正弦值為.【點睛】本題考查空間線面的位置關(guān)系、線面成角,還考查空間想象能力以及數(shù)形結(jié)合思想,屬于中檔題.21.(1)見解析(2)【解析】

(1)利用正弦定理求得,由此得到,結(jié)合證得平面,由此證得.(2)建立空間直角坐標系,利用平面和平面的法向量,計算出二面角的余弦值,再轉(zhuǎn)化為正弦值.【詳解】(1)在中,由正弦定理可得:,,底面,平面,;(2)以為坐標原點建立如圖所示的空間直角坐標系,,設(shè)平面的法向量為,由可得:,令,則,設(shè)平面的法向量為,由可得:,令,則,設(shè)二面角的平面角為,由圖可知為鈍角,則,,故二面角的正弦值為.【點睛】本小題主要考查線線垂直的證明,考查空間向量法求二面角,考查空間想象能力和邏輯推理能力,屬于中檔題.22.(1)證明見解析;(2)證明見解析;(3)不能為.【解析】

(1)由平面平面,可得平面,從而證明;(2)由平面與平面沒有交點,可得與不相交,又與共面,所以,同理可證,得證;(3)作交于點,延長交于點,連接,根據(jù)三垂線定理,確定二面角的平面角,若,,由大角對大邊知,兩者矛盾,故二面角的大小不能為.【詳解】(1)由平面平面,平面平面,且,所以平面,又平面,所以;(2)依題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論