版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
Quantum
Intelligence
Computing《智能信息處理與量子計算》第1講全套可編輯PPT課件2024/8/2212017年9月29日,中國一顆名為“墨子號”的衛(wèi)星使維也納和北京這兩個相隔半個地球的城市之間的視頻會議成為可能。當(dāng)它以每小時18,000英里(29,000公里)的速度劃過夜空時,衛(wèi)星向位于興隆的一個地面站發(fā)射了一個小數(shù)據(jù)包。不到一個小時后,衛(wèi)星經(jīng)過奧地利,將另一個數(shù)據(jù)包發(fā)送到格拉茨市附近的一個站。這些包是保護數(shù)據(jù)傳輸安全的加密密鑰,而且是量子密鑰。世界上第一個量子加密的洲際視頻鏈接。2024/8/2222024/8/2232024/8/224量子信息學(xué),是量子力學(xué)與信息科學(xué)相結(jié)合的產(chǎn)物,是以量子力學(xué)的態(tài)疊加原理為基礎(chǔ),研究信息處理的一門新興前沿科學(xué)量子信息學(xué)包括量子密碼術(shù)、量子通信、量子計算機等幾個方面2024/8/225In
physics
and
computerscience,
quantuminformation
isphysicalinformation
thatisheldinthe
state
ofaquantumsystem.Quantuminformationisthebasicentitythatisstudiedintheburgeoningfieldof
quantuminformationtheory,andmanipulatedusingtheengineeringtechniquesof
quantuminformationprocessing.Muchlikeclassicalinformationcanbeprocessedwith
digitalcomputers,
transmitted
fromplacetoplace,manipulatedwith
algorithms,andanalyzedwiththe
mathematics
ofcomputerscience,soalsoanalogousconceptsapplytoquantuminformation.2024/8/226‘IthinkIcansafelysaythatnooneunderstandsquantumphysics’2024/8/227saidbyRichardPhillipsFeynman,thepioneerofquantumcomputing,thewinnerofNobelPrizeinPhysics,19651982年,美國著名物理物學(xué)家理查德·費曼在一個公開的演講中提出利用量子體系實現(xiàn)通用計算的新奇想法——如果用量子系統(tǒng)所構(gòu)成的計算機來模擬量子現(xiàn)象則運算時間可大幅度減少,從而量子計算機的概念誕生了。WhyQuantumComputers?QuantumIntelligenceComputingHowQuantumComputerswouldWork?Outline3212024/8/22
Integerprimefactorization921=3×7221=13×17221=?11021=?11021=103×107SeveralμsWhyQuantumComputer
Largeprimefactorization232digitsnumber(768bits)?1230186684530117755130494958384962720772853569595334792197322452151726400507263657518745202199786469389956474942774063845925192557326303453731548268507917026122142913461670429214311602221240479274737794080665351419597459856902143413=33478071698956898786044169848212690817704794983713768568912431388982883793878002287614711652531743087737814467999489×36746043666799590428244633799627952632279158164343087642676032283815739666511279233373417143396810270092798736308917WhyQuantumComputer
2024/8/2210
Largeprimefactorization232digitsnumber(768bits)Thecomputationtook6monthson802.2
GHzcomputers[T.Kleinjung10]Aquantumcomputer?Ifonasinglecore2.2GHzprocessorwith2GBRAM,1500yearsThefactorizationofthe768-bitnumberwouldbeamatterofseconds[T.Phillips10]WhyQuantumComputer
2024/8/2211
LargeprimefactorizationCryptographyschemeswidelyusedine-businessisbasedontheassumptionthatfactoringlargenumbersiscomputationallyinfeasibleWhyQuantumComputer
QuantumComputeramatterofseconds
Internetwillnotbesafe2024/8/2212designapracticalcryptosystemwithcredibleevidenceofsecurityagainstquantumattackQuantumCryptographyChallengeWeneedQuantumComputer2024/8/2213WhyQuantumComputers?QuantumIntelligenceComputingHowQuantumComputerswouldWork?Outline321HowQuantumComputerswouldwork2024/8/2215量子計算機是一類遵循量子力學(xué)規(guī)律進行高速數(shù)學(xué)和邏輯運算、存儲及處理量子信息的物理裝置當(dāng)某個裝置處理和計算的是量子信息,運行的是量子算法時,它就是量子計算機QuantumComputer
DataRepresentationHowQuantumComputerswouldwork2024/8/2216
Measurement
DataProcessing
DataRepresentationState:onoroffBit:0or1AnelectronHowQuantumComputerswouldwork2024/8/2217electroncloudinahydrogenatom2024/8/2218
DataRepresentationSuchasuperposition,isthebasicunitofencodedinformationinquantumcomputersHowQuantumComputerswouldwork2024/8/2219Quantumbit(qubit)AQubit(Quantumbit)canberepresentedas
whereα0andα1
arecomplexnumbers
|α0|2+|α1|2=1AQubitmaybeinthe“1”state,inthe“0”state,orin
anylinearsuperposition
ofthetwoHowQuantumComputerswouldwork2024/8/2220Forexample,3qubits
Multi-qubitsisalinearsuperpositionofthe8
classicalstates{|000>,|001>,|010>,|011>,|100>,|101>,|110>,|111>}HowQuantumComputerswouldwork2024/8/2221
nqubits
Multi-qubitsisalinearsuperpositionoftheN=2nclassicalstatesHowQuantumComputerswouldworkSo,itcanrepresentN=2n
numbersatthesametime2024/8/2222
MeasurementForcingthesystemtodecideonaparticularstate,withprobabilitiesdeterminedbytheamplitudesHowQuantumComputerswouldwork2024/8/2223
DataProcessingTransformationUfisanUnitaryOperatorHowQuantumComputerswouldwork2024/8/2224H:CircuitsS:Algorithms
QuantumParallelismTransformationUfisappliedtoallN=2n
basisstatessimultaneouslyasuperpositionofallN=2nbasisstates
HowQuantumComputerswouldwork2024/8/2225
QuantumgateX–negation,NOTgateY=ZX,PauligateZ-phaseshiftgateI-identitytransformationPerform
UnitaryOperationHowQuantumComputerswouldwork2024/8/2226HowQuantumComputerswouldwork
QuantumgateControlled-NOTgateHadamardgatereversible2024/8/2227HowQuantumComputerswouldwork
QuantumgateArrayCanperformallquantumcomputationsreversibleA128qubitprocessorchipsetconstructedbyD-WaveSystemsInc.,in20112024/8/2228HowQuantumComputerswouldwork
QuantumAlgorithmsreversible2024/8/2229QuantumIntelligenceComputingWhyQuantumComputers?QuantumIntelligenceComputingHowQuantumComputerswouldWork?Outline321QuantumIntelligenceComputing
QuantumNeuralNetworks2024/8/2231
QuantumGeneticAlgorithm
QuantumSearchAlgorithm
QuantumSwarm
IntelligenceAlgorithmsearchanamefrom10,000entriesinanunsorted
telephonedirectoryclassicalalgorithmcanbeestimatedattaking5,000
steps()Grover’squantumsearchalgorithmwouldtakeonly100steps!()2024/8/2232Grover’sQuantumSearchAlgorithmMechanismofGAreadtheresultInitializationPrepareann-QubitGroverIteration
SelectiveInversion
InversionaboutAverage
TerminationconditionMeasurementYesNoGrover’sQuantumSearchAlgorithm2024/8/2233MechanismofGASimulationofGrover’sAlgorithminaclassicalComputerGrover’sQuantumSearchAlgorithm2024/8/2234QuantumIntelligenceComputinginSignalProcessingQuantumSearchAlgorithmforLarge-ScaleImageRetrieval
QuantumAlgorithms
for
CommunicationSignalDetection
QuantumAlgorithms
forMachineRecognitionofHumanFaces2024/8/2235HowdifficultandHowfar?/watch?v=VyX8E4KUkWw/watch?v=JcW9YGdoKxo&feature=related2024/8/22362024/8/2237newandgreatideasinsignalprocessingQuantumIntelligenceComputingItmaygiveusItisengaging!AboutCourse38ThankYouforyourattention!Q&AGrover’sQuantum
SearchAlgorithmanditsApplication《智能信息處理與量子計算》第2講Motivation:
QCGA
BasedSignalDetectorinMIMO-OFDMSystemsGA-Grover’sQuantumSearchAlgorithm4OutlineConclusions55321SimulationResults41Motivation42QuantumComputation&Grover’sQuantumSearch
Algorithm1QuantumComputationQuantumparallelismAnewmodeofcomputation,thatarebeyondthecapabilitiesofanyclassicalcomputationForexample,aclassicalcomputercanbeestimatedattaking1500yearstofactora232digitsnumber,whereasaquantumcomputerwouldtakearound20secondsGrover’sQuantumSearchAlgorithmAunsorteddatabasesearchalgorithmbasedonQCIfthesearchspacehasNentries,thenthetimetakentocompleteasearchisO(N).Noclassicalalgorithmcandobetterthanthis
Grover’salgorithmworksintimeForlargeN,thiscouldyieldverylargeperformanceincreasesForexample,tosearchanamefrom10,000entriesinasmallcitytelephonedirectory,classicalalgorithmcanbeestimatedattaking5,000stepswhereasGrover’salgorithmwouldtakeonly100steps!MIMO-OFDMsignaldetectioncanbeformulatedasaproblemtosearchtheoptimalsolutionThatisthemotivationforustoapplyGroverAlgorithmtosignaldetectioninMIMO-OFDMsystemsGrover’sQuantum
SearchAlgorithm43BasicconceptsofQCQuantumBit2PartAQuantumRegisterN=2nstatescanbestoredinthen-bitQregisteratthesametime
orqubitQuantumparallelism
orQregisteranylinearhermitianoperatorUoperatingonaqregisterisexecutedparallel
onallN=2nstoredstatesMechanismofGAPartB44readtheresultoff(x)=1
Initialization.PrepareaQregisterGroverIteration
SelectiveInversion
InversionaboutAverage
TerminationconditionMeasurementYesNoPerformtheselectivephaseinversionbyOracleoperatormisthenumberofthesolutionsGrover’sQuantum
SearchAlgorithm2
PartC45PerformanceEvaluationofGAFig.1TherelationshipbetweenPandi
Pistheprobabilityofsearchingthedesiredanswer,andiistheiterationtimesn----numberofqubitsN=2n----numberofdatabaseentriesI
----optimalnumberofiterationsP----probabilityofobtainingtheoptimalsolutiontheoptimalnumberofevaluationsis71Grover’sQuantum
SearchAlgorithm2
PartD46ImprovedGrover’sAlgorithmFig.2TherelationshipbetweenPandi
Pistheprobabilityofsearchingthedesiredanswer,andiistheiterationtimesMoreiterationswillreducetheprobabiltyofobtainoptimalsolutionTheprobabilityofobtainingtheoptimalsolutionNentries,msolutionsGrover’sQuantum
SearchAlgorithm2
PartD47ImprovedGrover’sAlgorithmTheprobabilityofobtainingtheoptimalsolutionNentries,msolutionsIncaseofm=N/2,θ=π/4,theprobabilityofobtainingtheoptimalsolutionis0.5andthefailurerateisalso0.5,nomatterhowmanyiterationsGrover’sQuantum
SearchAlgorithm2
PartD48ImprovedGrover’sAlgorithmWeconsideranImprovedGroveralgorithmasfollowsGrover’sQuantum
SearchAlgorithm2
PartD49ImprovedGrover’sAlgorithmWeconsideranImprovedGroveralgorithmasfollowsPGAIGAFig.3P~m/NIGA:Incaseofm=0.5N,P=1P≥98.01%,m>=0.25N,i=1Grover’sQuantum
SearchAlgorithm2GABasedSignalDetectorinMIMO-OFDMSystems50RemovecpFFTRemovecpFFTRemovecpFFTSignalDetectionSRx-1Rx-2Rx-M
...
...3ThediagramofMIMO-OFDMreceiverFig.4ThestructureofMIMO-OFDMsignaldetectorGABasedSignalDetectorinMIMO-OFDMSystems51MIMO-OFDMdetectionalgorithms1.OptimumDetection(Maximumlikelihood,ML)
theoptimalreceiverthebesthighcomplexity2.LinearDetection(Zero-Forcing,ZF;Minimum-Mean-Square-Error,MMSE)
lowcomplexity
limitedperformance3.Non-linearDetection(VerticalBellLayeredSpaceTime,VBLAST)
thebesttradeoffbetweenperformanceandcomplexity
difficulttoimplementforit’sintensivecomputation 3Thecomplexityofsearchingtheglobaloptimumbyexhaustivesearchis
GABasedSignalDetectorinMIMO-OFDMSystem52GABasedDetector3Fig.5ThestructureofGA-baseddetectorRemovecpFFTRemovecpFFTRemovecpFFTSRx-1Rx-2Rx-M......DatabaseConstructionGrover’sAlgorithmGABasedSignalDetectorinMIMO-OFDMSystem53DatabaseConstruction3nTqubitQregistersstoreall2nT
transmittedsequencesDatabase1SameIndexSearchtheindexofinDatabase2byGAstoreall
2nT
decisionvaluesDatabase2forallxieobtaintheoptimalsolutionSimulationResults544Fig.6.BitErrorRatiovs.Signal-NoiseRatio,BPSK,incorrectsolutionP=0.001Fig.7.BitErrorRatiovs.Signal-NoiseRatio,QPSK,incorrectsolutionP=0.001Itisevidentthattheproposed
GDdetectoroutperformstheMMSEandVBLAST-MMSEdetectorintheperformanceofBitErrorRate,closetotheoptimalMLdetectorSimulationResults554Fig.8.BitErrorRatiovs.Signal-NoiseRatio,QPSK,incorrectsolutionP=0.00001Fig.9.BitErrorRatiovs.Signal-NoiseRatio,QPSK,incorrectsolutionP=0.00001ItisevidentthattheproposedIGDdetectorisclosertotheoptimalMLdetectoreveninP=0.00001.TheprobabilityofGrover’salgorithmobtainingtheincorrectsolutionPis0.00001.Inthiscase,theperformanceofGDdetectordeclines
ThemostimportantisthatthecomplexityofGDandIGDisIt’smuchbetterthanclassicalMLdetectorwhichcomplexityisConclusion56ConclusionASPEN5Grover’squantumsearchAlgorithm(GA)canfindouttheglobaloptimaonlytakingstepsAnImprovedGA(IGA)isproposedNovelsignaldetectorsinMIMO-OFDMsystembasedonGAandIGAareproposedThesimulationresultsshowthattheproposedGAandIGA
baseddetectorsoutperformMMSEandVBLAST-MMSEbaseddetector,closetooptimalMLbaseddetectorandhavelowercomplexitythanML
ThankYouforyourattention!Q&AQuantum
Genetic
Algorithm《智能信息處理與量子計算》第3講2024/8/2259GeneticAlgorithmQuantumGeneticAlgorithmOutline212024/8/2260Geneticalgorithm
遺傳算法(GeneticAlgorithm,GA)是模擬達爾文生物進化論的自然選擇和遺傳學(xué)機理的生物進化過程的計算模型,是一種通過模擬自然進化過程搜索最優(yōu)解的方法。2024/8/2261Geneticalgorithm
2024/8/226262Geneticalgorithm
進化計算是一種成熟的具有高魯棒性和廣泛適用性的全局優(yōu)化方法,具有自組織、自適應(yīng)、自學(xué)習(xí)的特性,能夠不受問題性質(zhì)的限制,有效地處理傳統(tǒng)優(yōu)化算法難以解決的復(fù)雜問題。2024/8/22632024/8/22642024/8/22652024/8/2266復(fù)制2024/8/22672024/8/22682024/8/2269父代子代2024/8/2270父代子代2024/8/2271基本遺傳算法1.隨機產(chǎn)生一個由固定長度字符串組成的初始群體(種群);2.對于字符串種群,進行下述迭代,直到選種標(biāo)準(zhǔn)被滿足為止:計算群體中的每個個體字符串的適應(yīng)度值(fitness);進行以下三種操作(至少前兩種)來產(chǎn)生新的群體:選擇:把現(xiàn)有的個體字符串復(fù)制到新的群體中。雜交:通過遺傳重組隨機選擇兩個現(xiàn)有的子字符串,產(chǎn)生新的字符串。變異:將現(xiàn)有字符串中某一位的字符隨機變異。將后代中具有最高適應(yīng)值的個體字符串指定為遺傳算法運行的結(jié)果。這一結(jié)果可以是問題的解(或近似解)。2024/8/2272遺傳算法一般步驟2024/8/22732024/8/22742024/8/2275GeneticAlgorithmQuantumGeneticAlgorithmOutline212024/8/2276MechanismofGAQuantumGeneticAlgorithmQuantumGeneticAlgorithm(QGA)proposedcantreatthebalancebetweenexplorationandexploitationmoreeasilywhencomparedwithconventionalgeneticalgorithm(GA)QGAcanexplorethesearchspacewithasmallernumberofindividualsandexploitthesearchspaceforaglobalsolutionwithinashortspanoftime
2024/8/2277QuantumGeneticAlgorithmQuantumBitRepresentationor
qubitwhereα
andβarecomplexNumbers|α|2+|β|2=1AQ-bitmaybeinthe“1”state,inthe“0”state,orinanylinearsuperpositionofthetwo
states
(1)2024/8/2278QuantumGeneticAlgorithmQuantumBitQuantumGeneapairofnumbers(α,β)as[α
β]T,(α,β)correspondsaqubitor
qubitQuantumChromosomeastringofkQ-genesorQ-geneor
Q-ChromosomeRepresentation(2)2024/8/2279MechanismofGAQuantumGeneticAlgorithmAthree-Q-bitChromosomewiththreepairsofamplitudessuchas
(3)2024/8/2280MechanismofGAQuantumGeneticAlgorithmThenthestatesofthethree-Q-bitChromosomecanberepresentedasTheaboveresultmeansthattheprobabilitiestorepresentthestates
|000>,|001>,|010>,|011>,|100>,|101>,|110>,|111>are
3/32,9/32,1/32,3/32,3/32,9/32,1/32,3/32(4)2024/8/2281MechanismofGAQuantumGeneticAlgorithmApopulationofQuantumindividuals(Chromosome)isdefinedas(5)wherenisthesizeofpopulation,andqjtisaQuantumindividual2024/8/2282MechanismofGAQuantumGeneticAlgorithmAQ-gate
isdefinedasavariationoperatorofQGA(6)Theadjustmentoperationisasfollows(7)2024/8/2283MechanismofQGAQ(t)isapopulationofQ-chromosomesisaQ-chromosome
U(θ)isaQuantumrotationgateBeginInitializationQ(t)MakeP(t)bymeasureQ(t)EvaluatefitnessRecordthebestTerminationconditionUpdatebyQ-gatesEndYesNo2024/8/2284ThankYouforyourattention!Q&A2024/8/2285MechanismofGAQuantumGeneticAlgorithmTheprocedureofQGA2024/8/2286MechanismofGAQuantumGeneticAlgorithmOverallstructureofQGAkqubitCollapseBasestateBinarystringf(x)>f(b)?QGAanditsApplication《智能信息處理與量子計算》第4講2024/8/2288QGAPerformanceOutline21QGAforMIMO-OFDMDetection3QGAforCognitiveRadioSpectrumSharing2024/8/2289QGAPerformance
RepresentationQuantumBitPartAQuantumGeneapairofnumbers(α,β)as[α
β]T,(α,β)correspondsaqubitor
qubitQuantumChromosomeastringofkQ-genesorQ-geneor
Q-Chromosome2024/8/2290QGAPerformance
MechanismofQGAQ(t)isapopulationofQ-chromosomesisaQ-chromosome
U(θ)isaQuantumrotationgatePartBBeginInitializationQ(t)MakeP(t)bymeasureQ(t)EvaluatefitnessRecordthebestTerminationconditionUpdatebyQ-gatesEndYesNo2024/8/2291MechanismofGAQuantumGeneticAlgorithmTheprocedureofQGA2024/8/2292MechanismofGAQuantumGeneticAlgorithmOverallstructureofQGAkqubitCollapseBasestateBinarystringf(x)>f(b)?2024/8/2293QGAPerformance
PartCPerformanceEvaluationforQGAAnon-convexfunctionusedasaperformancetestproblemforoptimizationalgorithmsintroducedbyHowardH.Rosenbrockin1960AlsoknownasRosenbrock'svalleyorRosenbrock'sbananafunctionTheglobalminimumisinsidealong,narrow,parabolicshapedflatvalley.Tofindthevalleyistrivial.Toconvergetotheglobalminimum,however,isdifficultFig.1Rosenbrockfunction2024/8/2294QGAPerformance
PartCPerformanceEvaluationforQGAaglobaloptimizationtestfunctionwithseverallocalminimaFig.2Goldstein-Pricefunction2024/8/2295QGAPerformance
PartCPerformanceEvaluationforQGAFig.3ConvergenceprocessofGAandQGAforRosenbrockfunctionFig.4ConvergenceprocessofGAandQGAforGoldstein-PricefunctionQGAcanconvergetowardtheoptimalsolutionmorequicklythanGA2024/8/2296QGAPerformanceOutline21QGAforMIMO-OFDMDetection3QGAforCognitiveRadioSpectrumSharing2024/8/2297QGAforMIMO-OFDMDetectionMIMOAdvantagesDisadvantagesHighspectralefficienciesSevereinter-symbolinterference(ISI)OFDMAdvantagesDisadvantagesRobusttofrequencyselectivefadingchannelsLowspectralefficienciesMIMO-OFDMMIMO-OFDMSystem2024/8/2298QGAforMIMO-OFDMDetectionRemovecpFFTRemovecpFFTRemovecpFFTSignalDetectionSRx-1Rx-2Rx-M
...
...ThediagramofMIMO-OFDMreceiver2024/8/2299QGAforMIMO-OFDMDetectionMIMO-OFDMdetectionalgorithms1.OptimumDetection(Maximumlikelihood,ML)
theoptimalreceiverthebesthighcomplexity2.LinearDetection(Zero-Forcing,ZF;Minimum-Mean-Square-Error,MMSE)
lowcomplexity limitedperformance3.Non-linearDetection(VerticalBellLayeredSpaceTime,VBLAST) thebesttradeoffbetweenperformanceandcomplexity difficulttoimplementforit’sintensivecomputation 2024/8/22100QGAforMIMO-OFDMDetectionTheBlockDiagramofQGABasesDetectorRemovecpFFTQGADETECTIONRemovecpFFTRemovecpFFTSRx-1Rx-2Rx-M
...
...2024/8/22101QGAforMIMO-OFDMDetectionMainparameters1.Thegenenumberofqubitinquantumchromosomeisequaltothenumberofantennas
M.2.Thefitnessfunctionisbasedonmaximumlikelihoodrule:3.TerminateconditioniswhenthenumberofiterationsisequaltoG(generationnumber)2024/8/22102QGAforMIMO-OFDMDetectionSimulationresultsFig.7BitErrorRatiovs.Signal-NoiseRatio,BPSKFig.8BitErrorRatiovs.Signal-NoiseRatio,QPSK2024/8/22103QGAforMIMO-OFDMDetectionConclusionsComparedtothewell-knowVerticalBellLayeredSpaceTime(VBLAST)algorithm,thecomplexityoftheproposedschemeisreducedThesimulationresultsshowthattheQGAbaseddetectorismuchbetterthanVBLASTdetector,namelya2dBgaininperformancecanbeachievedBesidestheproposeddetectorisobviouslysuperiortotheGAbaseddetector2024/8/22104QGAPerformanceOutline21QGAforMIMO-OFDMDetection3QGAforCognitiveRadioSpectrumSharing2024/8/22105QGAforCognitiveRadioSpectrumSharingLimitedandinefficientspectrumresources2024/8/22106QGAforCognitiveRadioSpectrumSharingSpectrumallocationmodelbasedongraphtheoryAuctionbiddingmodelInterferencetemperaturemodelGametheorymodel
-Cooperativegametheorymodel-Non-cooperativegametheorymodelFourmainspectrumallocationmodels2024/8/22107QGAforCognitiveRadioSpectrumSharingNon-cooperativegamemodelweselectthecapacityavailabletotheCRuser(theplayer)astheutilityfunction2024/8/22108QGAforCognitiveRadioSpectrumSharingNon-cooperativegamemodelInnon-cooperativegames,eachCRuserwilltrytogetmorefrequencybandsforitsownandmaximizeitsownutilityfunction.Thisprocesscanbeexpressedas2024/8/22109QGAforCognitiveRadioSpectrumSharingNon-cooperativegamemodelweusesumcapacityofallCRusersastheutilityfunction,thusthegamewillbetakentothesocialoptimalpoint(themaximalsumcapacitypoint)Thespectrumsharingproblemcanbedefinedasthefollowingoptimizationproblem:2024/8/22110QGAforCognitiveRadioSpectrumSharingCRusers’powerPiBasestateQGA-SS2024/8/22111QGAforCognitiveRadioSpectrumSharingincreasethepopulation’sdiversity2024/8/22112QGAforCognitiveRadioSpectrumSharingFig.9SumcapacityversuspopulationsizeFig.10SumCapacityconvergencewithgenerationsSimulationResults2usersCRNetwork2024/8/22113QGAforCognitiveRadioSpectrumSharingFig.11SumcapacityversusgenerationsPopulationSize60,3ChannelsFig.12SumcapacityversusgenerationsPopulationSize60,4ChannelsSimulationResults4usersCRNetwork2024/8/22114QGAforCognitiveRadioSpectrumSharingAnovelcognitiveradiospectrumsharingschemebasedonQGAisproposedTheproposedschemeshowsbetterconvergencerateandhighersumcapacitythanGAbasedscheme
-notonlyintwo-userCRNetworkbutalsoinmulti-userCRNetworkThecapacityisaffectedbypopulationsizeofQGA
-developapopulationadaptationschemeforQGAbasedCRinthefutureworkConclusions2024/8/22115QGAPerformanceQGAforMulti-userDetectionOutline21QGAforMIMO-OFDMDetection3QGAforCognitiveRadioSpectrumSharing42024/8/22116QGAforMulti-userDetectionThestructureofQGAbasedMUD2024/8/22117QGAforMulti-userDetectionThereceivedsignalr(t)iswhereEk
,theenergyofthekthuserαk
,thepathgainofthekthuser
τk,thedelayofthekthuser
bk
,thesymbolofthekthuser
sk(t),thecontinuoussignaturesignaln(t),zeromeanwhiteGaussiannoise2024/8/22118QGAforMulti-userDetectionTheykistheoutputofthematchedfilterwhere2024/8/22119QGAforMulti-userDetectionSearchfortheglobaloptimumof(1),wecanobtainthedesiredresults(1)ProvedtoberathertiresomeWeuseQGAtosearchtheoptimum2024/8/22120QGAforMulti-userDetectionTheQGA-MUDAlgorithm
Theobjectivefunctionis(2)Thefitnessfunction(3)whereμis0.05insimulation2024/8/22121QGAforMulti-userDetectionTheresultsshowthatthedetectionperformanceoftheproposeddetectorisgettingbetterandbetterwiththeincreaseofpopulationsize(P)andgenerationnumber(G)Fig.5BitErrorRatiovs.Signal-NoiseRatioofQGA-MUD2024/8/22122QGAforMulti-userDetection
theproposedQGA-MUDoutperformstheGA-MUDinbit-errorrate
Fig.6BitErrorRatiovs.Signal-NoiseRatio2024/8/22123QGAforMulti-userDetectionAnovelmulti-userdetectionschemebasedonQuantumGeneticAlgorithmisproposedQGA-MUDresultedinbetterperformancethanGA-MUD,namelya2-3dBgaininperformancecanbeachievedTheresultsdemonstratedtheeffectivenessandtheapplicabilityofQGAinmulti-userdetectionConclusions2024/8/22124ThankYouforyourattention!Q&AQuantum
NeuralNetworks《智能信息處理與量子計算》第5講量子智能計算126ArtificialNeuralNetworkQuantumNeuralNetworkOutline21量子智能計算127ArtificialNeuralNetwork量子智能計算128ArtificialNeuralNetwork量子智能計算129ArtificialNeuralNetwork量子智能計算130ArtificialNeuralNetwork人工神經(jīng)元量子智能計算131ArtificialNeuralNetwork人工神經(jīng)元(Neuron)各突觸的權(quán)值偏置,即閥值量子智能計算132ArtificialNeuralNetwork激活函數(shù)(Activationfunctions)sigmoidfunction量子智能計算133ArtificialNeuralNetwork組成人工神經(jīng)網(wǎng)絡(luò)的三要素:神經(jīng)元,網(wǎng)絡(luò)拓撲,學(xué)習(xí)算法網(wǎng)絡(luò)模型
靜態(tài)神經(jīng)網(wǎng)絡(luò)動態(tài)神經(jīng)網(wǎng)絡(luò)多層感知器模型(MLP)徑向基函數(shù)網(wǎng)絡(luò)(RBF)自組織特征映射網(wǎng)絡(luò)(SOFM)時延神經(jīng)網(wǎng)絡(luò)遞歸神經(jīng)網(wǎng)絡(luò)量子智能計算134ArtificialNeuralNetwork
-多層感知器是信號處理中應(yīng)用最多的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)
-多層感知器是一種前饋神經(jīng)網(wǎng)絡(luò),由輸入層、輸出層和若干中間層(常稱為隱層,hidden-layer)組成
-多層感知器(MLP,MultilayerPerceptron)量子智能計算135ArtificialNeuralNetwork量子智能計算136ArtificialNeuralNetwork量子智能計算137ArtificialNeuralNetwork-徑向基函數(shù)網(wǎng)絡(luò)(RBF,RadialBasisFunctions)量子智能計算138ArtificialNeuralNetwork-自組織特征映射網(wǎng)絡(luò)
(SOFM:Self-organizationFeatureMap)右圖為用作離散映射的二維神經(jīng)元格型結(jié)構(gòu)的SOFM網(wǎng)絡(luò),其中每個神經(jīng)元全連接到輸入層的所有源節(jié)點;它是一個行-列排列的神經(jīng)元組成的單層前饋網(wǎng)絡(luò)主要用于實現(xiàn)對輸入特征向量的聚類量子智能計算139ArtificialNeuralNetwork-時延神經(jīng)網(wǎng)絡(luò)(TDNN)MLPLTDx(n)y(n)x(n)x(n-1)…x(n-p)MLPLTD1x(n)x(n)x(n-1)…x(n-p)LTD2y(n-q)y(n-2)y(n-1)Z-1對應(yīng)于非線性IIR(即非線性ARMA)對應(yīng)于非線性FIR(即非線性MA)量子智能計算140ArtificialNeuralNetwork-遞歸神經(jīng)網(wǎng)絡(luò)(RecurrentNeuralNetworks)Hopfield神經(jīng)網(wǎng)絡(luò)全連接的反饋網(wǎng)絡(luò)
Hopfield神經(jīng)網(wǎng)絡(luò)是基于內(nèi)容尋址的記憶系統(tǒng)實現(xiàn)聯(lián)想記憶存儲系統(tǒng)能保證收斂到局部極小值二進制閾值單元Z-1Z-1Z-1Z-1單元延時xiyi量子智能計算141ArtificialNeuralNetwork訓(xùn)練(training),又稱學(xué)習(xí)(learning)-神經(jīng)網(wǎng)絡(luò)訓(xùn)練
量子智能計算142ArtificialNeuralNetwork-訓(xùn)練規(guī)則
Hebb學(xué)習(xí)規(guī)則(相關(guān)學(xué)習(xí))(無師學(xué)習(xí))
其中
WTA(Winner-Take-All)(競爭)學(xué)習(xí)規(guī)則(無師學(xué)習(xí))
其中
δ學(xué)習(xí)規(guī)則(誤差修正學(xué)習(xí))(有師學(xué)習(xí))其中ε為代價函數(shù)。
量子智能計算143ArtificialNeuralNetwork-訓(xùn)練算法與神經(jīng)網(wǎng)絡(luò)模型相關(guān)如:多層感知器模型——BP學(xué)習(xí)算法量子智能計算144ArtificialNeuralNetwork《量子智能計算》145ArtificialNeuralNetworkQuantumNeuralNetworkOutline21量子智能計算146Motivation人工神經(jīng)網(wǎng)絡(luò)(ANN)的優(yōu)勢
并行分布式處理、魯棒性人工神經(jīng)網(wǎng)絡(luò)(ANN)的缺陷
耗時的訓(xùn)練、有限的記憶容量量子神經(jīng)網(wǎng)絡(luò)(QNN)具有以下一些優(yōu)點,可以克服ANN的某些缺陷量子智能計算147exponentialmemorycapacityhigherperformanceforlowernumberofhiddenneuronsfasterlearningeliminationofcatastrophicforgettingduetotheabsenceofpatterninterferencesinglelayernetworksolutionoflinearlyinseparableproblemsprocessingspeed(1010bits/s)smallscale(1011neurons/mm)higherstability
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度進口水果檢疫及銷售合作協(xié)議4篇
- 2025年度老字號餐廳品牌承包合作協(xié)議3篇
- 2025年場地服務(wù)咨詢與設(shè)施維護合作協(xié)議范本4篇
- 2024鋁模板搭建工程勞務(wù)分包協(xié)議
- 2025年版影視作品錄音合同范本影視錄音制作授權(quán)協(xié)議4篇
- 二零二五年度綠色建筑模板租賃協(xié)議3篇
- 2025年度供應(yīng)鏈金融企業(yè)間借貸合作協(xié)議3篇
- 二零二五年度濕地生態(tài)恢復(fù)與綠化工程合同范本4篇
- 二零二五年度國際視野下子女撫養(yǎng)權(quán)轉(zhuǎn)移協(xié)議4篇
- 2024淘寶年度倉儲物流人員勞動合同范本3篇
- 軟件項目應(yīng)急措施及方案
- 2025河北邯鄲經(jīng)開國控資產(chǎn)運營管理限公司招聘專業(yè)技術(shù)人才5名高頻重點提升(共500題)附帶答案詳解
- 2024年民法典知識競賽考試題庫及答案(共50題)
- 2025老年公寓合同管理制度
- 2024-2025學(xué)年人教版數(shù)學(xué)六年級上冊 期末綜合卷(含答案)
- 2024中國汽車后市場年度發(fā)展報告
- 鈑金設(shè)備操作培訓(xùn)
- 感染性腹瀉的護理查房
- 中考英語688高頻詞大綱詞頻表
- 九年級初三中考物理綜合復(fù)習(xí)測試卷3套(含答案)
- 工地設(shè)計代表服務(wù)記錄
評論
0/150
提交評論