版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
ChapterOneTheMarketTheTheoryofEconomicsdoesnot
furnishabodyofsettledconclusions
immediatelyapplicabletopolicy.Itis
amethodratherthanadoctrine,an
apparatusofthemind,atechniqueof
thinkingwhichhelpsitspossessorto
drawcorrectconclusions
---JohnMaynardKeynesEconomicModelingWhatcauseswhatineconomicsystems?Atwhatlevelofdetailshallwemodelaneconomicphenomenon?Whichvariablesaredeterminedoutsidethemodel(exogenous)andwhicharetobedeterminedbythemodel(endogenous)?ModelingtheApartmentMarketHowareapartmentrentsdetermined?Supposeapartmentsarecloseordistant,butotherwiseidenticaldistantapartmentsrentsareexogenousandknownmanypotentialrentersandlandlordsModelingtheApartmentMarketWhowillrentcloseapartments?Atwhatprice?Willtheallocationofapartmentsbedesirableinanysense?
Howcanweconstructaninsightfulmodeltoanswerthesequestions?EconomicModelingAssumptionsTwobasicpostulates:RationalChoice:Eachpersontriestochoosethebestalternativeavailabletohimorher.Equilibrium:Marketpriceadjustsuntilquantitydemandedequalsquantitysupplied.ModelingApartmentDemandDemand:Supposethemostanyonepersoniswillingtopaytorentacloseapartmentis$500/month.Then p=$500
QD=1.Supposethepricehastodropto$490beforea2ndpersonwouldrent.Then p=$490
QD=2.ModelingApartmentDemandTheloweristherentalratep,thelargeristhequantityofcloseapartmentsdemanded
p
QD
.Thequantitydemandedvs.pricegraphisthemarketdemandcurveforcloseapartments.MarketDemandCurveforApartmentspQDModelingApartmentSupplySupply:Ittakestimetobuildmorecloseapartmentssointhisshort-runthequantityavailableisfixed(atsay100).MarketSupplyCurveforApartmentspQS100CompetitiveMarketEquilibrium“l(fā)ow”rentalprice
quantitydemandedofcloseapartmentsexceedsquantityavailable
pricewillrise.“high”rentalprice
quantitydemandedlessthanquantityavailable
pricewillfall.CompetitiveMarketEquilibriumQuantitydemanded=quantityavailable
pricewillneitherrisenorfallsothemarketisatacompetitiveequilibrium.CompetitiveMarketEquilibriumpQD,QS100CompetitiveMarketEquilibriumpQD,QSpe100CompetitiveMarketEquilibriumpQD,QSpe100Peoplewillingtopaypeforcloseapartmentsgetcloseapartments.CompetitiveMarketEquilibriumpQD,QSpe100Peoplewillingtopaypeforcloseapartmentsgetcloseapartments.Peoplenotwillingtopay
peforcloseapartments
getdistantapartments.CompetitiveMarketEquilibriumQ:Whorentsthecloseapartments?A:Thosemostwillingtopay.Q:Whorentsthedistantapartments?A:Thoseleastwillingtopay.Sothecompetitivemarketallocationisby“willingness-to-pay”.ComparativeStaticsWhatisexogenousinthemodel?priceofdistantapartmentsquantityofcloseapartmentsincomesofpotentialrenters.Whathappensiftheseexogenousvariableschange?ComparativeStaticsSupposethepriceofdistantapartmentrises.Demandforcloseapartmentsincreases(rightwardshift),causingahigherpriceforcloseapartments.MarketEquilibriumpQD,QSpe100MarketEquilibriumpQD,QSpe100HigherdemandMarketEquilibriumpQD,QSpe100Higherdemandcauseshigher
marketprice;samequantity
traded.ComparativeStaticsSupposethereweremorecloseapartments.Supplyisgreater,sothepriceforcloseapartmentsfalls.MarketEquilibriumpQD,QSpe100MarketEquilibriumpQD,QS100HighersupplypeMarketEquilibriumpQD,QSpe100Highersupplycausesa
lowermarketpriceanda
largerquantitytraded.ComparativeStaticsSupposepotentialrenters’incomesrise,increasingtheirwillingness-to-payforcloseapartments.Demandrises(upwardshift),causinghigherpriceforcloseapartments.MarketEquilibriumpQD,QSpe100MarketEquilibriumpQD,QSpe100Higherincomescause
higherwillingness-to-payMarketEquilibriumpQD,QSpe100Higherincomescause
higherwillingness-to-pay,
highermarketprice,and
thesamequantitytraded.
TaxationPolicyAnalysisLocalgovernmenttaxesapartmentowners.Whathappenstopricequantityofcloseapartmentsrented?Isanyofthetax“passed”torenters?TaxationPolicyAnalysisMarketsupplyisunaffected.Marketdemandisunaffected.Sothecompetitivemarketequilibriumisunaffectedbythetax.Priceandthequantityofcloseapartmentsrentedarenotchanged.Landlordspayallofthetax.ImperfectlyCompetitiveMarketsAmongstmanypossibilitiesare:amonopolisticlandlordaperfectlydiscriminatorymonopolisticlandlordacompetitivemarketsubjecttorentcontrol.AMonopolisticLandlordWhenthelandlordsetsarentalpricepherentsD(p)apartments.Revenue=pD(p).Revenueislowifp
0RevenueislowifpissohighthatD(p)0.Anintermediatevalueforpmaximizesrevenue.MonopolisticMarketEquilibriumpQDLow
priceLowprice,highquantity
demanded,lowrevenue.MonopolisticMarketEquilibriumpQDHigh
priceHighprice,lowquantity
demanded,lowrevenue.MonopolisticMarketEquilibriumpQDMiddle
priceMiddleprice,mediumquantity
demanded,largerrevenue.MonopolisticMarketEquilibriumpQD,QSMiddle
priceMiddleprice,mediumquantity
demanded,largerrevenue.
Monopolistdoesnotrentallthe
closeapartments.100MonopolisticMarketEquilibriumpQD,QSMiddle
priceMiddleprice,mediumquantity
demanded,largerrevenue.
Monopolistdoesnotrentallthe
closeapartments.100Vacantcloseapartments.PerfectlyDiscriminatoryMonopolisticLandlordImaginethemonopolistkneweveryone’swillingness-to-pay.Charge$500tothemostwilling-to-pay,charge$490tothe2ndmostwilling-to-pay,etc.DiscriminatoryMonopolisticMarketEquilibriumpQD,QS100p1=$5001DiscriminatoryMonopolisticMarketEquilibriumpQD,QS100p1=$500p2=$49012DiscriminatoryMonopolisticMarketEquilibriumpQD,QS100p1=$500p2=$49012p3=$4753DiscriminatoryMonopolisticMarketEquilibriumpQD,QS100p1=$500p2=$49012p3=$4753DiscriminatoryMonopolisticMarketEquilibriumpQD,QS100p1=$500p2=$49012p3=$4753peDiscriminatorymonopolist
chargesthecompetitivemarket
pricetothelastrenter,and
rentsthecompetitivequantity
ofcloseapartments.RentControlLocalgovernmentimposesamaximumlegalprice,pmax<pe,thecompetitiveprice.MarketEquilibriumpQD,QSpe100MarketEquilibriumpQD,QSpe100pmaxMarketEquilibriumpQD,QSpe100pmaxExcessdemandMarketEquilibriumpQD,QSpe100pmaxExcessdemandThe100closeapartmentsarenolongerallocatedby
willingness-to-pay(lottery,lines,
largefamiliesfirst?).WhichMarketOutcomesAreDesirable?Whichisbetter?RentcontrolPerfectcompetitionMonopolyDiscriminatorymonopolyParetoEfficiencyVilfredoPareto;1848-1923.AParetooutcomeallowsno“wastedwelfare”;i.e.theonlywayoneperson’swelfarecanbeimprovedistoloweranotherperson’swelfare.ParetoEfficiencyJillhasanapartment;Jackdoesnot.Jillvaluestheapartmentat$200;Jackwouldpay$400forit.JillcouldsublettheapartmenttoJackfor$300.Bothgain,soitwasParetoinefficientforJilltohavetheapartment.ParetoEfficiencyAParetoinefficientoutcomemeansthereremainunrealizedmutualgains-to-trade.Anymarketoutcomethatachievesallpossiblegains-to-trademustbeParetoefficient.ParetoEfficiencyCompetitiveequilibrium:allcloseapartmentrentersvaluethematthemarketpricepeormoreallothersvaluecloseapartmentsatlessthanpesonomutuallybeneficialtradesremainsotheoutcomeisParetoefficient.ParetoEfficiencyDiscriminatoryMonopoly:assignmentofapartmentsisthesameaswiththeperfectlycompetitivemarketsothediscriminatorymonopolyoutcomeisalsoParetoefficient.ParetoEfficiencyMonopoly:notallapartmentsareoccupiedsoadistantapartmentrentercouldbeassignedacloseapartmentandhavehigherwelfarewithoutloweringanybodyelse’swelfare.sothemonopolyoutcomeisParetoinefficient.ParetoEfficiencyRentControl:somecloseapartmentsareassignedtorentersvaluingthematbelowthecompetitivepricepesomerentersvaluingacloseapartmentabovepedon’tgetcloseapartmentsParetoinefficientoutcome.HarderQuestionsOvertime,willthesupplyofcloseapartmentsincrease?rentcontroldecreasethesupplyofapartments?amonopolistsupplymoreapartmentsthanacompetitiverentalmarket?ChapterTwoBudgetaryandOtherConstraintsonChoiceConsumptionChoiceSetsAconsumptionchoicesetisthecollectionofallconsumptionchoicesavailabletotheconsumer.Whatconstrainsconsumptionchoice?Budgetary,timeandotherresourcelimitations.BudgetConstraintsAconsumptionbundlecontainingx1unitsofcommodity1,x2unitsofcommodity2andsoonuptoxnunitsofcommoditynisdenotedbythevector(x1,x2,…,xn).Commoditypricesarep1,p2,…,pn.BudgetConstraintsQ:Whenisaconsumptionbundle
(x1,…,xn)affordableatgivenpricesp1,…,pn?BudgetConstraintsQ:Whenisabundle(x1,…,xn)affordableatpricesp1,…,pn?A:When
p1x1+…+pnxn
£
m
wheremistheconsumer’s(disposable)income.BudgetConstraintsThebundlesthatareonlyjustaffordableformtheconsumer’sbudgetconstraint.Thisistheset
{(x1,…,xn)|x130,…,xn
30and
p1x1+…+pnxn
=
m}.
BudgetConstraintsTheconsumer’sbudgetsetisthesetofallaffordablebundles;
B(p1,…,pn,m)=
{(x1,…,xn)|x1
30,…,xn
30and
p1x1+…+pnxn
£
m}Thebudgetconstraintistheupperboundaryofthebudgetset.BudgetSetandConstraintforTwoCommoditiesx2x1Budgetconstraintisp1x1+p2x2=m.m/p1m/p2BudgetSetandConstraintforTwoCommoditiesx2x1Budgetconstraintisp1x1+p2x2=m.m/p2m/p1BudgetSetandConstraintforTwoCommoditiesx2x1Budgetconstraintisp1x1+p2x2=m.m/p1Justaffordablem/p2BudgetSetandConstraintforTwoCommoditiesx2x1Budgetconstraintisp1x1+p2x2=m.m/p1JustaffordableNotaffordablem/p2BudgetSetandConstraintforTwoCommoditiesx2x1Budgetconstraintisp1x1+p2x2=m.m/p1AffordableJustaffordableNotaffordablem/p2BudgetSetandConstraintforTwoCommoditiesx2x1Budgetconstraintisp1x1+p2x2=m.m/p1BudgetSet
thecollection
ofallaffordablebundles.m/p2BudgetSetandConstraintforTwoCommoditiesx2x1p1x1+p2x2=misx2=-(p1/p2)x1+m/p2soslopeis-p1/p2.m/p1BudgetSetm/p2BudgetConstraintsIfn=3whatdothebudgetconstraintandthebudgetsetlooklike?BudgetConstraintforThreeCommoditiesx2x1x3m/p2m/p1m/p3p1x1+p2x2+p3x3=mBudgetSetforThreeCommoditiesx2x1x3m/p2m/p1m/p3{(x1,x2,x3)|x1
30,x230,x3
3
0andp1x1+p2x2+p3x3
£
m}BudgetConstraintsForn=2andx1onthehorizontalaxis,theconstraint’sslopeis-p1/p2.Whatdoesitmean?
BudgetConstraintsForn=2andx1onthehorizontalaxis,theconstraint’sslopeis-p1/p2.Whatdoesitmean?
Increasingx1by1mustreducex2byp1/p2.BudgetConstraintsx2x1Slopeis-p1/p2+1-p1/p2BudgetConstraintsx2x1+1-p1/p2Opp.costofanextraunitof
commodity1isp1/p2units
foregoneofcommodity2.BudgetConstraintsx2x1Opp.costofanextraunitof
commodity1isp1/p2units
foregoneofcommodity2.And
theopp.costofanextra
unitofcommodity2is
p2/p1unitsforegone
ofcommodity1.-p2/p1+1BudgetSets&Constraints;IncomeandPriceChangesThebudgetconstraintandbudgetsetdependuponpricesandincome.Whathappensaspricesorincomechange?Howdothebudgetsetandbudgetconstraintchangeasincomemincreases?Originalbudgetsetx2x1HigherincomegivesmorechoiceOriginalbudgetsetNewaffordableconsumption
choicesx2x1Originalandnewbudgetconstraintsareparallel(sameslope).Howdothebudgetsetandbudgetconstraintchangeasincomemdecreases?Originalbudgetsetx2x1Howdothebudgetsetandbudgetconstraintchangeasincomemdecreases?x2x1New,smallerbudgetsetConsumptionbundlesthatarenolongeraffordable.Oldandnewconstraintsareparallel.BudgetConstraints-IncomeChangesIncreasesinincomemshifttheconstraintoutwardinaparallelmanner,therebyenlargingthebudgetsetandimprovingchoice.BudgetConstraints-IncomeChangesIncreasesinincomemshifttheconstraintoutwardinaparallelmanner,therebyenlargingthebudgetsetandimprovingchoice.Decreasesinincomemshifttheconstraintinwardinaparallelmanner,therebyshrinkingthebudgetsetandreducingchoice.BudgetConstraints-IncomeChangesNooriginalchoiceislostandnewchoicesareaddedwhenincomeincreases,sohigherincomecannotmakeaconsumerworseoff.Anincomedecreasemay(typicallywill)maketheconsumerworseoff.BudgetConstraints-PriceChangesWhathappensifjustonepricedecreases?Supposep1decreases.Howdothebudgetsetandbudgetconstraintchangeasp1
decreasesfromp1’top1”?Originalbudgetsetx2x1m/p2m/p1’m/p1”-p1’/p2Howdothebudgetsetandbudgetconstraintchangeasp1
decreasesfromp1’top1”?Originalbudgetsetx2x1m/p2m/p1’m/p1”Newaffordablechoices-p1’/p2Howdothebudgetsetandbudgetconstraintchangeasp1
decreasesfromp1’top1”?Originalbudgetsetx2x1m/p2m/p1’m/p1”NewaffordablechoicesBudgetconstraintpivots;slopeflattensfrom-p1’/p2to-p1”/p2-p1’/p2-p1”/p2BudgetConstraints-PriceChangesReducingthepriceofonecommoditypivotstheconstraintoutward.Nooldchoiceislostandnewchoicesareadded,soreducingonepricecannotmaketheconsumerworseoff.BudgetConstraints-PriceChangesSimilarly,increasingonepricepivotstheconstraintinwards,reduceschoiceandmay(typicallywill)maketheconsumerworseoff.UniformAdValoremSalesTaxesAnadvaloremsalestaxleviedatarateof5%increasesallpricesby5%,frompto(1+0×05)p=1×05p.Anadvaloremsalestaxleviedatarateoftincreasesallpricesbytpfrompto(1+t)p.Auniformsalestaxisapplieduniformlytoallcommodities.UniformAdValoremSalesTaxesAuniformsalestaxleviedatratetchangestheconstraintfrom
p1x1+p2x2=m
to
(1+t)p1x1+(1+t)p2x2=mUniformAdValoremSalesTaxesAuniformsalestaxleviedatratetchangestheconstraintfrom
p1x1+p2x2=m
to
(1+t)p1x1+(1+t)p2x2=m
i.e.
p1x1+p2x2=m/(1+t).UniformAdValoremSalesTaxesx2x1p1x1+p2x2=mUniformAdValoremSalesTaxesx2x1p1x1+p2x2=mp1x1+p2x2=m/(1+t)UniformAdValoremSalesTaxesx2x1Equivalentincomeloss
isUniformAdValoremSalesTaxesx2x1Auniformadvalorem
salestaxleviedatratet
isequivalenttoanincome
taxleviedatrateTheFoodStampProgramFoodstampsarecouponsthatcanbelegallyexchangedonlyforfood.Howdoesacommodity-specificgiftsuchasafoodstampalterafamily’sbudgetconstraint?TheFoodStampProgramSupposem=$100,pF=$1andthepriceof“othergoods”ispG=$1.Thebudgetconstraintisthen
F+G=100.TheFoodStampProgramGF100100F+G=100;beforestamps.TheFoodStampProgramGF100100F+G=100:beforestamps.TheFoodStampProgramGF100100F+G=100:beforestamps.Budgetsetafter40food
stampsissued.14040TheFoodStampProgramGF100100F+G=100:beforestamps.Budgetsetafter40food
stampsissued.140Thefamily’sbudget
setisenlarged.40TheFoodStampProgramWhatiffoodstampscanbetradedonablackmarketfor$0.50each?TheFoodStampProgramGF100100F+G=100:beforestamps.Budgetconstraintafter40
foodstampsissued.140120Budgetconstraintwith
blackmarkettrading.40TheFoodStampProgramGF100100F+G=100:beforestamps.Budgetconstraintafter40
foodstampsissued.140120Blackmarkettrading
makesthebudget
setlargeragain.40BudgetConstraints-RelativePrices“Numeraire”means“unitofaccount”.Supposepricesandincomearemeasuredindollars.Sayp1=$2,p2=$3,m=$12.Thentheconstraintis
2x1+3x2=12.BudgetConstraints-RelativePricesIfpricesandincomearemeasuredincents,thenp1=200,p2=300,m=1200andtheconstraintis
200x1+300x2=1200,
thesameas
2x1+3x2=12.Changingthenumerairechangesneitherthebudgetconstraintnorthebudgetset.BudgetConstraints-RelativePricesTheconstraintforp1=2,p2=3,m=12
2x1+3x2=12
isalso1.x1+(3/2)x2=6,
theconstraintforp1=1,p2=3/2,m=6.Settingp1=1makescommodity1thenumeraireanddefinesallpricesrelativetop1;e.g.3/2isthepriceofcommodity2relativetothepriceofcommodity1.BudgetConstraints-RelativePricesAnycommoditycanbechosenasthenumerairewithoutchangingthebudgetsetorthebudgetconstraint.BudgetConstraints-RelativePricesp1=2,p2=3andp3=6
priceofcommodity2relativetocommodity1is3/2,priceofcommodity3relativetocommodity1is3.Relativepricesaretheratesofexchangeofcommodities2and3forunitsofcommodity1.ShapesofBudgetConstraintsQ:Whatmakesabudgetconstraintastraightline?A:Astraightlinehasaconstantslopeandtheconstraintis
p1x1+…+pnxn=m
soifpricesareconstantsthenaconstraintisastraightline.ShapesofBudgetConstraintsButwhatifpricesarenotconstants?E.g.bulkbuyingdiscounts,orpricepenaltiesforbuying“toomuch”.Thenconstraintswillbecurved.ShapesofBudgetConstraints-QuantityDiscountsSupposep2isconstantat$1butthatp1=$2for0£x1
£20andp1=$1forx1>20.ShapesofBudgetConstraints-QuantityDiscountsSupposep2isconstantat$1butthatp1=$2for0£x1
£20andp1=$1forx1>20.Thentheconstraint’sslopeis
-2,for0£x1
£20
-p1/p2=
-1,forx1>20
andtheconstraintis{ShapesofBudgetConstraintswithaQuantityDiscountm=$1005010020Slope=-2/1=-2
(p1=2,p2=1)Slope=-1/1=-1
(p1=1,p2=1)80x2x1ShapesofBudgetConstraintswithaQuantityDiscountm=$1005010020Slope=-2/1=-2
(p1=2,p2=1)Slope=-1/1=-1
(p1=1,p2=1)80x2x1ShapesofBudgetConstraintswithaQuantityDiscountm=$100501002080x2x1BudgetSetBudgetConstraintShapesofBudgetConstraintswithaQuantityPenaltyx2x1BudgetSetBudgetConstraintShapesofBudgetConstraints-OnePriceNegativeCommodity1isstinkygarbage.Youarepaid$2perunittoacceptit;i.e.p1=-$2.p2=$1.Income,otherthanfromacceptingcommodity1,ism=$10.Thentheconstraintis
-2x1+x2=10orx2=2x1+10.ShapesofBudgetConstraints-OnePriceNegative10Budgetconstraint’sslopeis-p1/p2=-(-2)/1=+2x2x1x2=2x1+10ShapesofBudgetConstraints-OnePriceNegative10x2x1
Budgetsetis
allbundlesfor
whichx1
30,
x2
30andx2
£2x1+10.MoreGeneralChoiceSetsChoicesareusuallyconstrainedbymorethanabudget;e.g.timeconstraintsandotherresourcesconstraints.Abundleisavailableonlyifitmeetseveryconstraint.MoreGeneralChoiceSetsFoodOtherStuff10Atleast10unitsoffoodmustbeeatentosurviveMoreGeneralChoiceSetsFoodOtherStuff10BudgetSetChoiceisalsobudget
constrained.MoreGeneralChoiceSetsFoodOtherStuff10Choiceisfurtherrestrictedbyatimeconstraint.MoreGeneralChoiceSetsSowhatisthechoiceset?MoreGeneralChoiceSetsFoodOtherStuff10MoreGeneralChoiceSetsFoodOtherStuff10MoreGeneralChoiceSetsFoodOtherStuff10Thechoicesetistheintersectionofalloftheconstraintsets.ChapterThreePreferencesRationalityinEconomics
BehavioralPostulate:
Adecisionmakeralwayschoosesitsmostpreferredalternativefromitssetofavailablealternatives.Sotomodelchoicewemustmodeldecisionmakers’preferences.PreferenceRelationsComparingtwodifferentconsumptionbundles,xandy:strictpreference:xismorepreferredthanisy.weakpreference:xisasatleastaspreferredasisy.indifference:xisexactlyaspreferredasisy.PreferenceRelationsStrictpreference,weakpreferenceandindifferenceareallpreferencerelations.Particularly,theyareordinalrelations;i.e.theystateonlytheorderinwhichbundlesarepreferred.PreferenceRelations
denotesstrictpreference;
xymeansthatbundlexispreferredstrictlytobundley.ppPreferenceRelations
denotesstrictpreference;
xymeansbundlexispreferredstrictlytobundley.~denotesindifference;x~ymeansxandyareequallypreferred.ppPreferenceRelations
denotesstrictpreferenceso
xymeansthatbundlexispreferredstrictlytobundley.~denotesindifference;x~ymeansxandyareequallypreferred.denotesweakpreference;
xymeansxispreferredatleastasmuchasisy.
~f~fppPreferenceRelationsxyandyximplyx~y.~f~fPreferenceRelationsxyandyximplyx~y.xyand(notyx)implyxy.~f~f~f~fpAssumptionsaboutPreferenceRelationsCompleteness:Foranytwobundlesxandyitisalwayspossibletomakethestatementthateither
xy
or
yx.~f~fAssumptionsaboutPreferenceRelationsReflexivity:Anybundlexisalwaysatleastaspreferredasitself;i.e.
xx.~fAssumptionsaboutPreferenceRelationsTransitivity:If
xisatleastaspreferredasy,and
yisatleastaspreferredasz,then
xisatleastaspreferredasz;i.e.
xyandyzxz.~f~f~fIndifferenceCurvesTakeareferencebundlex’.Thesetofallbundlesequallypreferredtox’istheindifferencecurvecontainingx’;thesetofallbundlesy~x’.Sinceanindifference“curve”isnotalwaysacurveabetternamemightbeanindifference“set”.IndifferenceCurvesx2x1x”x”’x’~x”~x”’x’IndifferenceCurvesx2x1z
x
yppxyzIndifferenceCurvesx2x1xAllbundlesinI1arestrictlypreferredtoallinI2.yzAllbundlesinI2arestrictlypreferredto
allinI3.I1I2I3IndifferenceCurvesx2x1I(x’)xI(x)WP(x),thesetof
bundlesweaklypreferredtox.IndifferenceCurvesx2x1WP(x),thesetof
bundlesweaklypreferredtox.
WP(x)
includes
I(x).xI(x)IndifferenceCurvesx2x1SP(x),thesetof
bundlesstrictlypreferredtox,
doesnot
includeI(x).xI(x)IndifferenceCurvesCannotIntersect
x2x1xyzI1I2FromI1,x~y.FromI2,x~z.Thereforey~z.IndifferenceCurvesCannotIntersect
x2x1xyzI1I2FromI1,x~y.FromI2,x~z.Thereforey~z.ButfromI1andI2weseeyz,a
contradiction.pSlopesofIndifferenceCurvesWhenmoreofacommodityisalwayspreferred,thecommodityisagood.Ifeverycommodityisagoodthenindifferencecurvesarenegativelysloped.SlopesofIndifferenceCurvesBetterWorseGood2Good1Twogoods
anegativelyslopedindifferencecurve.SlopesofIndifferenceCurvesIflessofacommodityisalwayspreferredthenthecommodityisabad.SlopesofIndifferenceCurvesBetterWorseGood2Bad1Onegoodandone
badapositivelyslopedindifferencecurve.ExtremeCasesofIndifferenceCurves;PerfectSubstitutesIfaconsumeralwaysregardsunitsofcommodities1and2asequivalent,thenthecommoditiesareperfectsubstitutesandonlythetotalamountofthetwocommoditiesinbundlesdeterminestheirpreferencerank-order.ExtremeCasesofIndifferenceCurves;PerfectSubstitutesx2x1881515Slopesareconstantat-1.I2I1BundlesinI2allhaveatotal
of15unitsandarestrictlypreferredtoallbundlesin
I1,whichhaveatotalof
only8unitsinthem.ExtremeCasesofIndifferenceCurves;PerfectComplementsIfaconsumeralwaysconsumescommodities1and2infixedproportion(e.g.one-to-one),thenthecommoditiesareperfectcomplementsandonlythenumberofpairsofunitsofthetwocommoditiesdeterminesthepreferencerank-orderofbundles.ExtremeCasesofIndifferenceCurves;PerfectComplementsx2x1I145o5959Eachof(5,5),(5,9)and(9,5)contains
5pairssoeachisequallypreferred.
ExtremeCasesofIndifferenceCurves;PerfectComplementsx2x1I2I145o5959Sinceeachof(5,5),(5,9)and(9,5)contains5pairs,eachislesspreferredthanthebundle(9,9)
whichcontains9pairs.
PreferencesExhibitingSatiationAbundlestrictlypreferredtoanyotherisasatiationpointorablisspoint.Whatdoindifferencecurveslooklikeforpreferencesexhibitingsatiation?IndifferenceCurvesExhibitingSatiationx2x1Satiation
(bliss)
pointIndifferenceCurvesExhibitingSatiationx2x1BetterBetterBetterSatiation
(bliss)
pointIndifferenceCurvesExhibitingSatiationx2x1BetterBetterBetterSatiation
(bliss)
pointIndifferenceCurvesforDiscreteCommoditiesAcommodityisinfinitelydivisibleifitcanbeacquiredinanyquantity;e.g.waterorcheese.Acommodityisdiscreteifitcomesinunitlumpsof1,2,3,…andsoon;e.g.aircraft,shipsandrefrigerators.IndifferenceCurvesfo
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國公關(guān)行業(yè)全國市場開拓戰(zhàn)略制定與實施研究報告
- 2025-2030年中國金融押運行業(yè)資本規(guī)劃與股權(quán)融資戰(zhàn)略制定與實施研究報告
- 2025-2030年中國企業(yè)管理培訓行業(yè)資本規(guī)劃與股權(quán)融資戰(zhàn)略制定與實施研究報告
- 新形勢下風電主軸行業(yè)轉(zhuǎn)型升級戰(zhàn)略制定與實施研究報告
- 2025-2030年中國酒店行業(yè)并購重組擴張戰(zhàn)略制定與實施研究報告
- 關(guān)于學校安裝減速帶調(diào)查問卷
- 2024年一年級語文下冊說課稿
- 烏海特種陶瓷制品項目可行性研究報告
- 2025年中國智能航空物流行業(yè)市場全景監(jiān)測及投資前景展望報告
- 中國木制衣架行業(yè)發(fā)展監(jiān)測及市場發(fā)展?jié)摿︻A測報告
- 物業(yè)管理流程:高端寫字樓服務
- JTG-B01-2014公路工程技術(shù)標準
- 海員常見疾病的保健與預防
- 易錯題(試題)-2024一年級上冊數(shù)學北師大版含答案
- 傷口護理小組工作總結(jié)
- 蘇教版六年級科學上冊復習資料-已整理
- 科勒衛(wèi)浴行業(yè)分析
- 湖南省邵陽市初中聯(lián)考2023-2024學年九年級上學期期末地理試題
- 美術(shù)概論課件
- 綠籬移栽施工方案
- 機器人論文3000字范文
評論
0/150
提交評論