四川省彭州市彭州中學2025屆第二學期高三數(shù)學試題統(tǒng)練(一)含解析_第1頁
四川省彭州市彭州中學2025屆第二學期高三數(shù)學試題統(tǒng)練(一)含解析_第2頁
四川省彭州市彭州中學2025屆第二學期高三數(shù)學試題統(tǒng)練(一)含解析_第3頁
四川省彭州市彭州中學2025屆第二學期高三數(shù)學試題統(tǒng)練(一)含解析_第4頁
四川省彭州市彭州中學2025屆第二學期高三數(shù)學試題統(tǒng)練(一)含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

四川省彭州市彭州中學2025屆第二學期高三數(shù)學試題統(tǒng)練(一)注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,橢圓的方程,雙曲線的方程為,和的離心率之積為,則的漸近線方程為()A. B. C. D.2.已知拋物線上的點到其焦點的距離比點到軸的距離大,則拋物線的標準方程為()A. B. C. D.3.一輛郵車從地往地運送郵件,沿途共有地,依次記為,,…(為地,為地).從地出發(fā)時,裝上發(fā)往后面地的郵件各1件,到達后面各地后卸下前面各地發(fā)往該地的郵件,同時裝上該地發(fā)往后面各地的郵件各1件,記該郵車到達,,…各地裝卸完畢后剩余的郵件數(shù)記為.則的表達式為().A. B. C. D.4.執(zhí)行如下的程序框圖,則輸出的是()A. B.C. D.5.已知復(fù)數(shù)滿足:(為虛數(shù)單位),則()A. B. C. D.6.設(shè)不等式組表示的平面區(qū)域為,若從圓:的內(nèi)部隨機選取一點,則取自的概率為()A. B. C. D.7.M、N是曲線y=πsinx與曲線y=πcosx的兩個不同的交點,則|MN|的最小值為()A.π B.π C.π D.2π8.下列函數(shù)中,在定義域上單調(diào)遞增,且值域為的是()A. B. C. D.9.已知,函數(shù)在區(qū)間內(nèi)沒有最值,給出下列四個結(jié)論:①在上單調(diào)遞增;②③在上沒有零點;④在上只有一個零點.其中所有正確結(jié)論的編號是()A.②④ B.①③ C.②③ D.①②④10.為雙曲線的左焦點,過點的直線與圓交于、兩點,(在、之間)與雙曲線在第一象限的交點為,為坐標原點,若,且,則雙曲線的離心率為()A. B. C. D.11.在棱長為a的正方體中,E、F、M分別是AB、AD、的中點,又P、Q分別在線段、上,且,設(shè)平面平面,則下列結(jié)論中不成立的是()A.平面 B.C.當時,平面 D.當m變化時,直線l的位置不變12.a(chǎn)為正實數(shù),i為虛數(shù)單位,,則a=()A.2 B. C. D.1二、填空題:本題共4小題,每小題5分,共20分。13.已知的展開式中含有的項的系數(shù)是,則展開式中各項系數(shù)和為______.14.若點為點在平面上的正投影,則記.如圖,在棱長為1的正方體中,記平面為,平面為,點是線段上一動點,.給出下列四個結(jié)論:①為的重心;②;③當時,平面;④當三棱錐的體積最大時,三棱錐外接球的表面積為.其中,所有正確結(jié)論的序號是________________.15.已知函數(shù)在上單調(diào)遞增,則實數(shù)a值范圍為_________.16.已知全集,集合,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某大學開學期間,該大學附近一家快餐店招聘外賣騎手,該快餐店提供了兩種日工資結(jié)算方案:方案規(guī)定每日底薪100元,外賣業(yè)務(wù)每完成一單提成2元;方案規(guī)定每日底薪150元,外賣業(yè)務(wù)的前54單沒有提成,從第55單開始,每完成一單提成5元.該快餐店記錄了每天騎手的人均業(yè)務(wù)量,現(xiàn)隨機抽取100天的數(shù)據(jù),將樣本數(shù)據(jù)分為七組,整理得到如圖所示的頻率分布直方圖.(1)隨機選取一天,估計這一天該快餐店的騎手的人均日外賣業(yè)務(wù)量不少于65單的概率;(2)從以往統(tǒng)計數(shù)據(jù)看,新聘騎手選擇日工資方案的概率為,選擇方案的概率為.若甲、乙、丙、丁四名騎手分別到該快餐店應(yīng)聘,四人選擇日工資方案相互獨立,求至少有兩名騎手選擇方案的概率,(3)若僅從人日均收入的角度考慮,請你為新聘騎手做出日工資方案的選擇,并說明理由.(同組中的每個數(shù)據(jù)用該組區(qū)間的中點值代替)18.(12分)已知函數(shù)有兩個極值點,.(1)求實數(shù)的取值范圍;(2)證明:.19.(12分)已知,,函數(shù)的最小值為.(1)求證:;(2)若恒成立,求實數(shù)的最大值.20.(12分)設(shè)函數(shù).(1)當時,求不等式的解集;(2)若對恒成立,求的取值范圍.21.(12分)如圖,在四棱錐中,平面,底面是矩形,,,分別是,的中點.(Ⅰ)求證:平面;(Ⅱ)設(shè),求三棱錐的體積.22.(10分)已知橢圓過點,設(shè)橢圓的上頂點為,右頂點和右焦點分別為,,且.(1)求橢圓的標準方程;(2)設(shè)直線交橢圓于,兩點,設(shè)直線與直線的斜率分別為,,若,試判斷直線是否過定點?若過定點,求出該定點的坐標;若不過定點,請說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

根據(jù)橢圓與雙曲線離心率的表示形式,結(jié)合和的離心率之積為,即可得的關(guān)系,進而得雙曲線的離心率方程.【詳解】橢圓的方程,雙曲線的方程為,則橢圓離心率,雙曲線的離心率,由和的離心率之積為,即,解得,所以漸近線方程為,化簡可得,故選:A.本題考查了橢圓與雙曲線簡單幾何性質(zhì)應(yīng)用,橢圓與雙曲線離心率表示形式,雙曲線漸近線方程求法,屬于基礎(chǔ)題.2.B【解析】

由拋物線的定義轉(zhuǎn)化,列出方程求出p,即可得到拋物線方程.【詳解】由拋物線y2=2px(p>0)上的點M到其焦點F的距離比點M到y(tǒng)軸的距離大,根據(jù)拋物線的定義可得,,所以拋物線的標準方程為:y2=2x.故選B.本題考查了拋物線的簡單性質(zhì)的應(yīng)用,拋物線方程的求法,屬于基礎(chǔ)題.3.D【解析】

根據(jù)題意,分析該郵車到第站時,一共裝上的郵件和卸下的郵件數(shù)目,進而計算可得答案.【詳解】解:根據(jù)題意,該郵車到第站時,一共裝上了件郵件,需要卸下件郵件,則,故選:D.本題主要考查數(shù)列遞推公式的應(yīng)用,屬于中檔題.4.A【解析】

列出每一步算法循環(huán),可得出輸出結(jié)果的值.【詳解】滿足,執(zhí)行第一次循環(huán),,;成立,執(zhí)行第二次循環(huán),,;成立,執(zhí)行第三次循環(huán),,;成立,執(zhí)行第四次循環(huán),,;成立,執(zhí)行第五次循環(huán),,;成立,執(zhí)行第六次循環(huán),,;成立,執(zhí)行第七次循環(huán),,;成立,執(zhí)行第八次循環(huán),,;不成立,跳出循環(huán)體,輸出的值為,故選:A.本題考查算法與程序框圖的計算,解題時要根據(jù)算法框圖計算出算法的每一步,考查分析問題和計算能力,屬于中等題.5.A【解析】

利用復(fù)數(shù)的乘法、除法運算求出,再根據(jù)共軛復(fù)數(shù)的概念即可求解.【詳解】由,則,所以.故選:A本題考查了復(fù)數(shù)的四則運算、共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.6.B【解析】

畫出不等式組表示的可行域,求得陰影部分扇形對應(yīng)的圓心角,根據(jù)幾何概型概率計算公式,計算出所求概率.【詳解】作出中在圓內(nèi)部的區(qū)域,如圖所示,因為直線,的傾斜角分別為,,所以由圖可得取自的概率為.故選:B本小題主要考查幾何概型的計算,考查線性可行域的畫法,屬于基礎(chǔ)題.7.C【解析】

兩函數(shù)的圖象如圖所示,則圖中|MN|最小,設(shè)M(x1,y1),N(x2,y2),則x1=,x2=π,|x1-x2|=π,|y1-y2|=|πsinx1-πcosx2|=π+π=π,∴|MN|==π.故選C.8.B【解析】

分別作出各個選項中的函數(shù)的圖象,根據(jù)圖象觀察可得結(jié)果.【詳解】對于,圖象如下圖所示:則函數(shù)在定義域上不單調(diào),錯誤;對于,的圖象如下圖所示:則在定義域上單調(diào)遞增,且值域為,正確;對于,的圖象如下圖所示:則函數(shù)單調(diào)遞增,但值域為,錯誤;對于,的圖象如下圖所示:則函數(shù)在定義域上不單調(diào),錯誤.故選:.本題考查函數(shù)單調(diào)性和值域的判斷問題,屬于基礎(chǔ)題.9.A【解析】

先根據(jù)函數(shù)在區(qū)間內(nèi)沒有最值求出或.再根據(jù)已知求出,判斷函數(shù)的單調(diào)性和零點情況得解.【詳解】因為函數(shù)在區(qū)間內(nèi)沒有最值.所以,或解得或.又,所以.令.可得.且在上單調(diào)遞減.當時,,且,所以在上只有一個零點.所以正確結(jié)論的編號②④故選:A.本題主要考查三角函數(shù)的圖象和性質(zhì),考查函數(shù)的零點問題,意在考查學生對這些知識的理解掌握水平.10.D【解析】

過點作,可得出點為的中點,由可求得的值,可計算出的值,進而可得出,結(jié)合可知點為的中點,可得出,利用勾股定理求得(為雙曲線的右焦點),再利用雙曲線的定義可求得該雙曲線的離心率的值.【詳解】如下圖所示,過點作,設(shè)該雙曲線的右焦點為,連接.,.,,,為的中點,,,,,由雙曲線的定義得,即,因此,該雙曲線的離心率為.故選:D.本題考查雙曲線離心率的求解,解題時要充分分析圖形的形狀,考查推理能力與計算能力,屬于中等題.11.C【解析】

根據(jù)線面平行與垂直的判定與性質(zhì)逐個分析即可.【詳解】因為,所以,因為E、F分別是AB、AD的中點,所以,所以,因為面面,所以.選項A、D顯然成立;因為,平面,所以平面,因為平面,所以,所以B項成立;易知平面MEF,平面MPQ,而直線與不垂直,所以C項不成立.故選:C本題考查直線與平面的位置關(guān)系.屬于中檔題.12.B【解析】

,選B.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】

由二項式定理及展開式通項公式得:,解得,令得:展開式中各項系數(shù)和,得解.【詳解】解:由的展開式的通項,令,得含有的項的系數(shù)是,解得,令得:展開式中各項系數(shù)和為,故答案為:1.本題考查了二項式定理及展開式通項公式,屬于中檔題.14.①②③【解析】

①點在平面內(nèi)的正投影為點,而正方體的體對角線與和它不相交的的面對角線垂直,所以直線垂直于平面,而為正三角形,可得為正三角形的重心,所以①是正確的;②取的中點,連接,則點在平面的正投影在上,記為,而平面平面,所以,所以②正確;③若設(shè),則由可得,然后對應(yīng)邊成比例,可解,所以③正確;④由于,而的面積是定值,所以當點到平面的距離最大時,三棱錐的體積最大,而當點與點重合時,點到平面的距離最大,此時為棱長為的正四面體,其外接球半徑,則球,所以④錯誤.【詳解】因為,連接,則有平面平面為正三角形,所以為正三角形的中心,也是的重心,所以①正確;由平面,可知平面平面,記,由,可得平面平面,則,所以②正確;若平面,則,設(shè)由得,易得,由,則,由得,,解得,所以③正確;當與重合時,最大,為棱長為的正四面體,其外接球半徑,則球,所以④錯誤.故答案為:①②③此題考查立體幾何中的垂直、平行關(guān)系,求幾何體的體積,考查空間想象能力和推理能力,屬于難題.15.【解析】

由在上恒成立可求解.【詳解】,令,∵,∴,又,,從而,令,問題等價于在時恒成立,∴,解得.故答案為:.本題考查函數(shù)的單調(diào)性,解題關(guān)鍵是問題轉(zhuǎn)化為恒成立,利用換元法和二次函數(shù)的性質(zhì)易求解.16.【解析】

根據(jù)題意可得出,然后進行補集的運算即可.【詳解】根據(jù)題意知,,,,.故答案為:.本題考查列舉法的定義、全集的定義、補集的運算,考查計算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)0.4;(2);(3)應(yīng)選擇方案,理由見解析【解析】

(1)根據(jù)頻率分布直方圖,可求得該快餐店的騎手的人均日外賣業(yè)務(wù)量不少于65單的頻率,即可估算其概率;(2)根據(jù)獨立重復(fù)試驗概率求法,先求得四人中有0人、1人選擇方案的概率,再由對立事件概率性質(zhì)即可求得至少有兩名騎手選擇方案的概率;(3)設(shè)騎手每日完成外賣業(yè)務(wù)量為件,分別表示出方案的日工資和方案的日工資函數(shù)解析式,即可計算兩種計算方式下的數(shù)學期望,并根據(jù)數(shù)學期望作出選擇.【詳解】(1)設(shè)事件為“隨機選取一天,這一天該快餐店的騎手的人均日外賣業(yè)務(wù)量不少于65單”.根據(jù)頻率分布直方圖可知快餐店的人均日外賣業(yè)務(wù)量不少于65單的頻率分別為,∵,∴估計為0.4.(2)設(shè)事件′為“甲、乙、丙、丁四名騎手中至少有兩名騎手選擇方案”,設(shè)事件,為“甲、乙、丙、丁四名騎手中恰有人選擇方案”,則,所以四名騎手中至少有兩名騎手選擇方案的概率為.(3)設(shè)騎手每日完成外賣業(yè)務(wù)量為件,方案的日工資,方案的日工資,所以隨機變量的分布列為1601802002202402602800.050.050.20.30.20.150.05;同理,隨機變量的分布列為1501802302803300.30.30.20.150.05.∵,∴建議騎手應(yīng)選擇方案.本題考查了頻率分布直方圖的簡單應(yīng)用,獨立重復(fù)試驗概率的求法,數(shù)學期望的求法并由期望作出方案選擇,屬于中檔題.18.(1)(2)證明見解析【解析】

(1)先求得導(dǎo)函數(shù),根據(jù)兩個極值點可知有兩個不等實根,構(gòu)造函數(shù),求得;討論和兩種情況,即可確定零點的情況,即可由零點的情況確定的取值范圍;(2)根據(jù)極值點定義可知,,代入不等式化簡變形后可知只需證明;構(gòu)造函數(shù),并求得,進而判斷的單調(diào)區(qū)間,由題意可知,并設(shè),構(gòu)造函數(shù),并求得,即可判斷在內(nèi)的單調(diào)性和最值,進而可得,即可由函數(shù)性質(zhì)得,進而由單調(diào)性證明,即證明,從而證明原不等式成立.【詳解】(1)函數(shù)則,因為存在兩個極值點,,所以有兩個不等實根.設(shè),所以.①當時,,所以在上單調(diào)遞增,至多有一個零點,不符合題意.②當時,令得,0減極小值增所以,即.又因為,,所以在區(qū)間和上各有一個零點,符合題意,綜上,實數(shù)的取值范圍為.(2)證明:由題意知,,所以,.要證明,只需證明,只需證明.因為,,所以.設(shè),則,所以在上是增函數(shù),在上是減函數(shù).因為,不妨設(shè),設(shè),,則,當時,,,所以,所以在上是增函數(shù),所以,所以,即.因為,所以,所以.因為,,且在上是減函數(shù),所以,即,所以原命題成立,得證.本題考查了利用導(dǎo)數(shù)研究函數(shù)的極值點,由導(dǎo)數(shù)證明不等式,構(gòu)造函數(shù)法的綜合應(yīng)用,極值點偏移證明不等式成立的應(yīng)用,是高考的常考點和熱點,屬于難題.19.(1)見解析;(2)最大值為.【解析】

(1)將函數(shù)表示為分段函數(shù),利用函數(shù)的單調(diào)性求出該函數(shù)的最小值,進而可證得結(jié)論成立;(2)由可得出,并將代數(shù)式與相乘,展開后利用基本不等式可求得的最小值,進而可得出實數(shù)的最大值.【詳解】(1).當時,函數(shù)單調(diào)遞減,則;當時,函數(shù)單調(diào)遞增,則;當時,函數(shù)單調(diào)遞增,則.綜上所述,,所以;(2)因為恒成立,且,,所以恒成立,即.因為,當且僅當時等號成立,所以,實數(shù)的最大值為.本題考查含絕對值函數(shù)最值的求解,同時也考查了利用基本不等式恒成立求參數(shù),考查推理能力與計算能力,屬于中等題.20.(1)或;(2)或.【解析】試題分析:(1)根據(jù)絕對值定義將不等式化為三個不等式組,分別求解集,最后求并集(2)根據(jù)絕對值三角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論