版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆天津市寧河區(qū)北淮淀鎮(zhèn)中學(xué)中考數(shù)學(xué)對點突破模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列敘述,錯誤的是()A.對角線互相垂直且相等的平行四邊形是正方形B.對角線互相垂直平分的四邊形是菱形C.對角線互相平分的四邊形是平行四邊形D.對角線相等的四邊形是矩形2.若|a|=﹣a,則a為()A.a(chǎn)是負(fù)數(shù) B.a(chǎn)是正數(shù) C.a(chǎn)=0 D.負(fù)數(shù)或零3.如圖,將周長為8的△ABC沿BC方向平移1個單位長度得到,則四邊形的周長為()A.8 B.10 C.12 D.164.已知正方形ABCD的邊長為4cm,動點P從A出發(fā),沿AD邊以1cm/s的速度運動,動點Q從B出發(fā),沿BC,CD邊以2cm/s的速度運動,點P,Q同時出發(fā),運動到點D均停止運動,設(shè)運動時間為x(秒),△BPQ的面積為y(cm2),則y與x之間的函數(shù)圖象大致是()A. B. C. D.5.甲、乙兩人同時分別從A,B兩地沿同一條公路騎自行車到C地.已知A,C兩地間的距離為110千米,B,C兩地間的距離為100千米.甲騎自行車的平均速度比乙快2千米/時.結(jié)果兩人同時到達(dá)C地.求兩人的平均速度,為解決此問題,設(shè)乙騎自行車的平均速度為x千米/時.由題意列出方程.其中正確的是()A. B. C. D.6.如圖是某個幾何體的展開圖,該幾何體是()A.三棱柱 B.圓錐 C.四棱柱 D.圓柱7.一個正比例函數(shù)的圖象過點(2,﹣3),它的表達(dá)式為()A. B. C. D.8.以坐標(biāo)原點為圓心,以2個單位為半徑畫⊙O,下面的點中,在⊙O上的是()A.(1,1) B.(,) C.(1,3) D.(1,)9.的絕對值是()A.8 B.﹣8 C. D.﹣10.據(jù)資料顯示,地球的海洋面積約為360000000平方千米,請用科學(xué)記數(shù)法表示地球海洋面積面積約為多少平方千米()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在平面直角坐標(biāo)系中,矩形ABCD的邊AB:BC=3:2,點A(-3,0),B(0,6)分別在x軸,y軸上,反比例函數(shù)y=(x>0)的圖象經(jīng)過點D,且與邊BC交于點E,則點E的坐標(biāo)為__.12.某航班每次飛行約有111名乘客,若飛機失事的概率為p=1.11115,一家保險公司要為乘客保險,許諾飛機一旦失事,向每位乘客賠償41萬元人民幣.平均來說,保險公司應(yīng)向每位乘客至少收取_____元保險費才能保證不虧本.13.如圖,點D在⊙O的直徑AB的延長線上,點C在⊙O上,且AC=CD,∠ACD=120°,CD是⊙O的切線:若⊙O的半徑為2,則圖中陰影部分的面積為_____.14.如圖,在等腰直角三角形ABC中,∠C=90°,點D為AB的中點,已知扇形EAD和扇形FBD的圓心分別為點A、點B,且AB=4,則圖中陰影部分的面積為_____(結(jié)果保留π).15.已知線段a=4,b=1,如果線段c是線段a、b的比例中項,那么c=_____.16.在平面直角坐標(biāo)系中,點A的坐標(biāo)為(a,3),點B的坐標(biāo)是(4,b),若點A與點B關(guān)于原點O對稱,則ab=_____.17.農(nóng)科院新培育出A、B兩種新麥種,為了了解它們的發(fā)芽情況,在推廣前做了五次發(fā)芽實驗,每次隨機各自取相同種子數(shù),在相同的培育環(huán)境中分別實驗,實驗情況記錄如下:種子數(shù)量10020050010002000A出芽種子數(shù)961654919841965發(fā)芽率0.960.830.980.980.98B出芽種子數(shù)961924869771946發(fā)芽率0.960.960.970.980.97下面有三個推斷:①當(dāng)實驗種子數(shù)量為100時,兩種種子的發(fā)芽率均為0.96,所以他們發(fā)芽的概率一樣;②隨著實驗種子數(shù)量的增加,A種子出芽率在0.98附近擺動,顯示出一定的穩(wěn)定性,可以估計A種子出芽的概率是0.98;③在同樣的地質(zhì)環(huán)境下播種,A種子的出芽率可能會高于B種子.其中合理的是__________(只填序號).三、解答題(共7小題,滿分69分)18.(10分)已知:如圖,∠ABC=∠DCB,BD、CA分別是∠ABC、∠DCB的平分線.求證:AB=DC.19.(5分)在平面直角坐標(biāo)系中,已知拋物線經(jīng)過A(﹣4,0),B(0,﹣4),C(2,0)三點.(1)求拋物線解析式;(2)若點M為第三象限內(nèi)拋物線上一動點,點M的橫坐標(biāo)為m,△MOA的面積為S.求S關(guān)于m的函數(shù)關(guān)系式,并求出當(dāng)m為何值時,S有最大值,這個最大值是多少?(3)若點Q是直線y=﹣x上的動點,過Q做y軸的平行線交拋物線于點P,判斷有幾個Q能使以點P,Q,B,O為頂點的四邊形是平行四邊形的點,直接寫出相應(yīng)的點Q的坐標(biāo).20.(8分)某高校學(xué)生會在某天午餐后,隨機調(diào)查了部分同學(xué)就餐飯菜的剩余情況,并將結(jié)果統(tǒng)計后繪制成了如圖所示的不完整的統(tǒng)計圖.(1)這次被調(diào)查的同學(xué)共有名;(2)補全條形統(tǒng)計圖;(3)計算在扇形統(tǒng)計圖中剩大量飯菜所對應(yīng)扇形圓心角的度數(shù);(4)校學(xué)生會通過數(shù)據(jù)分析,估計這次被調(diào)查的所有學(xué)生一餐浪費的食物可以供200人用一餐.據(jù)此估算,該校20000名學(xué)生一餐浪費的食物可供多少人食用一餐?21.(10分)在學(xué)習(xí)了矩形這節(jié)內(nèi)容之后,明明同學(xué)發(fā)現(xiàn)生活中的很多矩形都很特殊,如我們的課本封面、A4的打印紙等,這些矩形的長與寬之比都為:1,我們將具有這類特征的矩形稱為“完美矩形”如圖(1),在“完美矩形”ABCD中,點P為AB邊上的定點,且AP=AD.求證:PD=AB.如圖(2),若在“完美矩形“ABCD的邊BC上有一動點E,當(dāng)?shù)闹凳嵌嗌贂r,△PDE的周長最???如圖(3),點Q是邊AB上的定點,且BQ=BC.已知AD=1,在(2)的條件下連接DE并延長交AB的延長線于點F,連接CF,G為CF的中點,M、N分別為線段QF和CD上的動點,且始終保持QM=CN,MN與DF相交于點H,請問GH的長度是定值嗎?若是,請求出它的值,若不是,請說明理由.22.(10分)已知Rt△ABC,∠A=90°,BC=10,以BC為邊向下作矩形BCDE,連AE交BC于F.(1)如圖1,當(dāng)AB=AC,且sin∠BEF=時,求的值;(2)如圖2,當(dāng)tan∠ABC=時,過D作DH⊥AE于H,求的值;(3)如圖3,連AD交BC于G,當(dāng)時,求矩形BCDE的面積23.(12分)如圖,AB是圓O的直徑,AC是圓O的弦,過點C的切線交AB的延長線于點D,若∠A=∠D,CD=2.(1)求∠A的度數(shù).(2)求圖中陰影部分的面積.24.(14分)計算:÷–+20180
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】【分析】根據(jù)正方形的判定、平行四邊形的判定、菱形的判定和矩形的判定定理對選項逐一進行分析,即可判斷出答案.【詳解】A.對角線互相垂直且相等的平行四邊形是正方形,正確,不符合題意;B.對角線互相垂直平分的四邊形是菱形,正確,不符合題意;C.對角線互相平分的四邊形是平行四邊形,正確,不符合題意;D.對角線相等的平行四邊形是矩形,故D選項錯誤,符合題意,故選D.【點睛】本題考查了正方形的判定、平行四邊形的判定、菱形的判定和矩形的判定等,熟練掌握相關(guān)判定定理是解答此類問題的關(guān)鍵.2、D【解析】
根據(jù)絕對值的性質(zhì)解答.【詳解】解:當(dāng)a≤0時,|a|=-a,∴|a|=-a時,a為負(fù)數(shù)或零,故選D.【點睛】本題考查的是絕對值的性質(zhì),①當(dāng)a是正有理數(shù)時,a的絕對值是它本身a;②當(dāng)a是負(fù)有理數(shù)時,a的絕對值是它的相反數(shù)-a;③當(dāng)a是零時,a的絕對值是零.3、B【解析】根據(jù)平移的基本性質(zhì),得出四邊形ABFD的周長=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.根據(jù)題意,將周長為8個單位的△ABC沿邊BC向右平移1個單位得到△DEF,
∴AD=1,BF=BC+CF=BC+1,DF=AC;
又∵AB+BC+AC=8,
∴四邊形ABFD的周長=AD+AB+BF+DF=1+AB+BC+1+AC=1.
故選C.“點睛”本題考查平移的基本性質(zhì):①平移不改變圖形的形狀和大??;②經(jīng)過平移,對應(yīng)點所連的線段平行且相等,對應(yīng)線段平行且相等,對應(yīng)角相等.得到CF=AD,DF=AC是解題的關(guān)鍵.4、B【解析】
根據(jù)題意,Q點分別在BC、CD上運動時,形成不同的三角形,分別用x表示即可.【詳解】(1)當(dāng)0≤x≤2時,BQ=2x當(dāng)2≤x≤4時,如下圖由上可知故選:B.【點睛】本題是雙動點問題,解答時要注意討論動點在臨界兩側(cè)時形成的不同圖形,并要根據(jù)圖形列出函數(shù)關(guān)系式.5、A【解析】設(shè)乙騎自行車的平均速度為x千米/時,則甲騎自行車的平均速度為(x+2)千米/時,根據(jù)題意可得等量關(guān)系:甲騎110千米所用時間=乙騎100千米所用時間,根據(jù)等量關(guān)系可列出方程即可.解:設(shè)乙騎自行車的平均速度為x千米/時,由題意得:=,故選A.6、A【解析】
側(cè)面為三個長方形,底邊為三角形,故原幾何體為三棱柱.【詳解】解:觀察圖形可知,這個幾何體是三棱柱.
故選A.【點睛】本題考查的是三棱柱的展開圖,對三棱柱有充分的理解是解題的關(guān)鍵..7、A【解析】
利用待定系數(shù)法即可求解.【詳解】設(shè)函數(shù)的解析式是y=kx,根據(jù)題意得:2k=﹣3,解得:k=.∴函數(shù)的解析式是:.故選A.8、B【解析】
根據(jù)點到圓心的距離和半徑的數(shù)量關(guān)系即可判定點與圓的位置關(guān)系.【詳解】A選項,(1,1)到坐標(biāo)原點的距離為<2,因此點在圓內(nèi),B選項(,)到坐標(biāo)原點的距離為=2,因此點在圓上,C選項(1,3)到坐標(biāo)原點的距離為>2,因此點在圓外D選項(1,)到坐標(biāo)原點的距離為<2,因此點在圓內(nèi),故選B.【點睛】本題主要考查點與圓的位置關(guān)系,解決本題的關(guān)鍵是要熟練掌握點與圓的位置關(guān)系.9、C【解析】
根據(jù)絕對值的計算法則解答.如果用字母a表示有理數(shù),則數(shù)a絕對值要由字母a本身的取值來確定:①當(dāng)a是正有理數(shù)時,a的絕對值是它本身a;②當(dāng)a是負(fù)有理數(shù)時,a的絕對值是它的相反數(shù)﹣a;③當(dāng)a是零時,a的絕對值是零.【詳解】解:.故選【點睛】此題重點考查學(xué)生對絕對值的理解,熟練掌握絕對值的計算方法是解題的關(guān)鍵.10、B【解析】分析:科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).詳解:將360000000用科學(xué)記數(shù)法表示為:3.6×1.故選:B.點睛:此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.二、填空題(共7小題,每小題3分,滿分21分)11、(-2,7).【解析】
解:過點D作DF⊥x軸于點F,則∠AOB=∠DFA=90°,∴∠OAB+∠ABO=90°,∵四邊形ABCD是矩形,∴∠BAD=90°,AD=BC,∴∠OAB+∠DAF=90°,∴∠ABO=∠DAF,∴△AOB∽△DFA,∴OA:DF=OB:AF=AB:AD,∵AB:BC=3:2,點A(﹣3,0),B(0,6),∴AB:AD=3:2,OA=3,OB=6,∴DF=2,AF=4,∴OF=OA+AF=7,∴點D的坐標(biāo)為:(﹣7,2),∴反比例函數(shù)的解析式為:y=﹣①,點C的坐標(biāo)為:(﹣4,8).設(shè)直線BC的解析式為:y=kx+b,則解得:∴直線BC的解析式為:y=﹣x+6②,聯(lián)立①②得:或(舍去),∴點E的坐標(biāo)為:(﹣2,7).故答案為(﹣2,7).12、21【解析】每次約有111名乘客,如飛機一旦失事,每位乘客賠償41萬人民幣,共計4111萬元,由題意可得一次飛行中飛機失事的概率為P=1.11115,所以賠償?shù)腻X數(shù)為41111111×1.11115=2111元,即可得至少應(yīng)該收取保險費每人=21元.13、【解析】試題分析:連接OC,求出∠D和∠COD,求出邊DC長,分別求出三角形OCD的面積和扇形COB的面積,即可求出答案.連接OC,∵AC=CD,∠ACD=120°,∴∠CAD=∠D=30°,∵DC切⊙O于C,∴OC⊥CD,∴∠OCD=90°,∴∠COD=60°,在Rt△OCD中,∠OCD=90°,∠D=30°,OC=2,∴CD=2,∴陰影部分的面積是S△OCD﹣S扇形COB=×2×2﹣=2﹣π,故答案為2﹣π.考點:1.等腰三角形性質(zhì);2.三角形的內(nèi)角和定理;3.切線的性質(zhì);4.扇形的面積.14、4﹣π【解析】
由在等腰直角三角形ABC中,∠C=90°,AB=4,可求得直角邊AC與BC的長,繼而求得△ABC的面積,又由扇形的面積公式求得扇形EAD和扇形FBD的面積,繼而求得答案.【詳解】解:∵在等腰直角三角形ABC中,∠C=90°,AB=4,∴AC=BC=AB?sin45°=AB=2,∴S△ABC=AC?BC=4,∵點D為AB的中點,∴AD=BD=AB=2,∴S扇形EAD=S扇形FBD=×π×22=π,∴S陰影=S△ABC﹣S扇形EAD﹣S扇形FBD=4﹣π.故答案為:4﹣π.【點睛】此題考查了等腰直角三角形的性質(zhì)以及扇形的面積.注意S陰影=S△ABC﹣S扇形EAD﹣S扇形FBD.15、1【解析】
根據(jù)比例中項的定義,列出比例式即可得出中項,注意線段不能為負(fù).【詳解】根據(jù)比例中項的概念結(jié)合比例的基本性質(zhì),得:比例中項的平方等于兩條線段的乘積.則c1=4×1,c=±1,(線段是正數(shù),負(fù)值舍去),故c=1.故答案為1.【點睛】本題考查了比例線段;理解比例中項的概念,這里注意線段不能是負(fù)數(shù).16、1【解析】【分析】直接利用關(guān)于原點對稱點的性質(zhì)得出a,b的值,進而得出答案.【詳解】∵點A的坐標(biāo)為(a,3),點B的坐標(biāo)是(4,b),點A與點B關(guān)于原點O對稱,∴a=﹣4,b=﹣3,則ab=1,故答案為1.【點睛】本題考查了關(guān)于原點對稱的點的坐標(biāo),熟知關(guān)于原點對稱的兩點的橫、縱坐標(biāo)互為相反數(shù)是解題的關(guān)鍵.17、②③【解析】分析:根據(jù)隨機事件發(fā)生的“頻率”與“概率”的關(guān)系進行分析解答即可.詳解:(1)由表中的數(shù)據(jù)可知,當(dāng)實驗種子數(shù)量為100時,兩種種子的發(fā)芽率雖然都是96%,但結(jié)合后續(xù)實驗數(shù)據(jù)可知,此時的發(fā)芽率并不穩(wěn)定,故不能確定兩種種子發(fā)芽的概率就是96%,所以①中的說法不合理;(2)由表中數(shù)據(jù)可知,隨著實驗次數(shù)的增加,A種種子發(fā)芽的頻率逐漸穩(wěn)定在98%左右,故可以估計A種種子發(fā)芽的概率是98%,所以②中的說法是合理的;(3)由表中數(shù)據(jù)可知,隨著實驗次數(shù)的增加,A種種子發(fā)芽的頻率逐漸穩(wěn)定在98%左右,而B種種子發(fā)芽的頻率穩(wěn)定在97%左右,故可以估計在相同條件下,A種種子發(fā)芽率大于B種種子發(fā)芽率,所以③中的說法是合理的.故答案為:②③.點睛:理解“隨機事件發(fā)生的頻率與概率之間的關(guān)系”是正確解答本題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、∵平分平分,∴在與中,.【解析】分析:根據(jù)角平分線性質(zhì)和已知求出∠ACB=∠DBC,根據(jù)ASA推出△ABC≌△DCB,根據(jù)全等三角形的性質(zhì)推出即可.解答:證明:∵AC平分∠BCD,BC平分∠ABC,∴∠DBC=∠ABC,∠ACB=∠DCB,∵∠ABC=∠DCB,∴∠ACB=∠DBC,∵在△ABC與△DCB中,,∴△ABC≌△DCB,∴AB=DC.19、(1)y=x2+x﹣4;(2)S關(guān)于m的函數(shù)關(guān)系式為S=﹣m2﹣2m+8,當(dāng)m=﹣1時,S有最大值9;(3)Q坐標(biāo)為(﹣4,4)或(﹣2+2,2﹣2)或(﹣2﹣2,2+2)時,使點P,Q,B,O為頂點的四邊形是平行四邊形.【解析】
(1)設(shè)拋物線解析式為y=ax2+bx+c,然后把點A、B、C的坐標(biāo)代入函數(shù)解析式,利用待定系數(shù)法求解即可;(2)利用拋物線的解析式表示出點M的縱坐標(biāo),從而得到點M到x軸的距離,然后根據(jù)三角形面積公式表示并整理即可得解,根據(jù)拋物線的性質(zhì)求出第三象限內(nèi)二次函數(shù)的最值,然后即可得解;(3)利用直線與拋物線的解析式表示出點P、Q的坐標(biāo),然后求出PQ的長度,再根據(jù)平行四邊形的對邊相等列出算式,然后解關(guān)于x的一元二次方程即可得解.【詳解】解:(1)設(shè)拋物線解析式為y=ax2+bx+c,∵拋物線經(jīng)過A(﹣4,0),B(0,﹣4),C(2,0),∴,解得,∴拋物線解析式為y=x2+x﹣4;(2)∵點M的橫坐標(biāo)為m,∴點M的縱坐標(biāo)為m2+m﹣4,又∵A(﹣4,0),∴AO=0﹣(﹣4)=4,∴S=×4×|m2+m﹣4|=﹣(m2+2m﹣8)=﹣m2﹣2m+8,∵S=﹣(m2+2m﹣8)=﹣(m+1)2+9,點M為第三象限內(nèi)拋物線上一動點,∴當(dāng)m=﹣1時,S有最大值,最大值為S=9;故答案為S關(guān)于m的函數(shù)關(guān)系式為S=﹣m2﹣2m+8,當(dāng)m=﹣1時,S有最大值9;(3)∵點Q是直線y=﹣x上的動點,∴設(shè)點Q的坐標(biāo)為(a,﹣a),∵點P在拋物線上,且PQ∥y軸,∴點P的坐標(biāo)為(a,a2+a﹣4),∴PQ=﹣a﹣(a2+a﹣4)=﹣a2﹣2a+4,又∵OB=0﹣(﹣4)=4,以點P,Q,B,O為頂點的四邊形是平行四邊形,∴|PQ|=OB,即|﹣a2﹣2a+4|=4,①﹣a2﹣2a+4=4時,整理得,a2+4a=0,解得a=0(舍去)或a=﹣4,﹣a=4,所以點Q坐標(biāo)為(﹣4,4),②﹣a2﹣2a+4=﹣4時,整理得,a2+4a﹣16=0,解得a=﹣2±2,所以點Q的坐標(biāo)為(﹣2+2,2﹣2)或(﹣2﹣2,2+2),綜上所述,Q坐標(biāo)為(﹣4,4)或(﹣2+2,2﹣2)或(﹣2﹣2,2+2)時,使點P,Q,B,O為頂點的四邊形是平行四邊形.【點睛】本題是對二次函數(shù)的綜合考查有待定系數(shù)法求二次函數(shù)解析式,三角形的面積,二次函數(shù)的最值問題,平行四邊形的對邊相等的性質(zhì),平面直角坐標(biāo)系中兩點間的距離的表示,綜合性較強,但難度不大,仔細(xì)分析便不難求解.20、(1)1000(2)200(3)54°(4)4000人【解析】試題分析:(1)根據(jù)沒有剩飯的人數(shù)是400人,所占的百分比是40%,據(jù)此即可求得調(diào)查的總?cè)藬?shù);(2)利用(1)中求得結(jié)果減去其它組的人數(shù)即可求得剩少量飯的人數(shù),從而補全直方圖;(3)利用360°乘以對應(yīng)的比例即可求解;(4)利用20000除以調(diào)查的總?cè)藬?shù),然后乘以200即可求解.試題解析:(1)被調(diào)查的同學(xué)的人數(shù)是400÷40%=1000(名);(2)剩少量的人數(shù)是1000-400-250-150=200(名),;(3)在扇形統(tǒng)計圖中剩大量飯菜所對應(yīng)扇形圓心角的度數(shù)是:360°×1501000(4)200001000答:校20000名學(xué)生一餐浪費的食物可供4000人食用一餐.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大小.21、(1)證明見解析(2)(3)【解析】
(1)根據(jù)題中“完美矩形”的定義設(shè)出AD與AB,根據(jù)AP=AD,利用勾股定理表示出PD,即可得證;(2)如圖,作點P關(guān)于BC的對稱點P′,連接DP′交BC于點E,此時△PDE的周長最小,設(shè)AD=PA=BC=a,表示出AB與CD,由AB-AP表示出BP,由對稱的性質(zhì)得到BP=BP′,由平行得比例,求出所求比值即可;(3)GH=,理由為:由(2)可知BF=BP=AB-AP,由等式的性質(zhì)得到MF=DN,利用AAS得到△MFH≌△NDH,利用全等三角形對應(yīng)邊相等得到FH=DH,再由G為CF中點,得到HG為中位線,利用中位線性質(zhì)求出GH的長即可.【詳解】(1)在圖1中,設(shè)AD=BC=a,則有AB=CD=a,∵四邊形ABCD是矩形,∴∠A=90°,∵PA=AD=BC=a,∴PD==a,∵AB=a,∴PD=AB;(2)如圖,作點P關(guān)于BC的對稱點P′,連接DP′交BC于點E,此時△PDE的周長最小,設(shè)AD=PA=BC=a,則有AB=CD=a,∵BP=AB-PA,∴BP′=BP=a-a,∵BP′∥CD,∴;(3)GH=,理由為:由(2)可知BF=BP=AB-AP,∵AP=AD,∴BF=AB-AD,∵BQ=BC,∴AQ=AB-BQ=AB-BC,∵BC=AD,∴AQ=AB-AD,∴BF=AQ,∴QF=BQ+BF=BQ+AQ=AB,∵AB=CD,∴QF=CD,∵QM=CN,∴QF-QM=CD-CN,即MF=DN,∵MF∥DN,∴∠NFH=∠NDH,在△MFH和△NDH中,,∴△MFH≌△NDH(AAS),∴FH=DH,∵G為CF的中點,∴GH是△CFD的中位線,∴GH=CD=×2=.【點睛】此題屬于相似綜合題,涉及的知識有:相似三角形的判定與性質(zhì),全等三角形的判定與性質(zhì),勾股定理,三角形中位線性質(zhì),平行線的判定與性質(zhì),熟練掌握相似三角形的性質(zhì)是解本題的關(guān)鍵.22、(1);(2)80;(3)100.【解析】
(1)過A作AK⊥BC于K,根據(jù)sin∠BEF=得出,設(shè)FK=3a,AK=5a,可求得BF=a,故;(2)過A作AK⊥BC于K,延長AK交E
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 網(wǎng)絡(luò)倫理與道德-第1篇-洞察分析
- 虛擬現(xiàn)實訓(xùn)練成本效益分析-洞察分析
- 無人零售技術(shù)發(fā)展研究-洞察分析
- 線纜絕緣老化檢測方法-洞察分析
- 虛假新聞識別與治理-洞察分析
- 《大數(shù)據(jù)存儲技術(shù)與應(yīng)用》 課件 項目一-任務(wù)二 走進大數(shù)據(jù)存儲技術(shù)
- 文化產(chǎn)品自動化生產(chǎn)線構(gòu)建-洞察分析
- 醫(yī)療器械合作的意向書(5篇)
- 《建筑節(jié)能的措施》課件
- 創(chuàng)意美術(shù)教育課程設(shè)計的多維探索
- 房產(chǎn)公司15周年年會主持詞5篇
- T-SZWA 001-2017 高分子益膠泥
- 五年級上冊英語試題- unit1 Did you come back yesterday- 外研社(含答案)
- GB/T 16571-2012博物館和文物保護單位安全防范系統(tǒng)要求
- GB/T 10002.3-2011給水用硬聚氯乙烯(PVC-U)閥門
- 2023年電大建筑制圖基礎(chǔ)專科必修期末試題及答案
- 離合器的相關(guān)計算
- 血細(xì)胞分析儀的應(yīng)用及形態(tài)學(xué)復(fù)檢
- 第5章 一元函數(shù)的導(dǎo)數(shù)及其應(yīng)用【知識導(dǎo)圖 】 高考數(shù)學(xué)復(fù)習(xí)思維導(dǎo)圖(人教A版2019)(必修第一冊)
- DB11-T1835-2021 給水排水管道工程施工技術(shù)規(guī)程高清最新版
- 醫(yī)療安全不良事件管理培訓(xùn).x
評論
0/150
提交評論