版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
第03講二項式定理(精講)目錄第一部分:知識點精準記憶第二部分:課前自我評估測試第三部分:典型例題剖析題型一:二項展開式的通項及其應(yīng)用角度1:求二項展開式的特定項(或系數(shù))角度2:兩個二項式之積中特定項(或系數(shù))問題角度3:三項展開式中特定項(或系數(shù))問題題型二:二項式系數(shù)與各項的系數(shù)和問題角度1:二項式系數(shù)和與系數(shù)和角度2:展開式的逆應(yīng)用題型三:項式系數(shù)的性質(zhì)角度1:二項式系數(shù)最大問題角度2:系數(shù)最大問題第四部分:高考真題感悟第一部分:知識點精準記憶第一部分:知識點精準記憶知識點一:二項式定理(1)二項式定理一般地,對于每個SKIPIF1<0(SKIPIF1<0),SKIPIF1<0的展開式中SKIPIF1<0共有SKIPIF1<0個,將它們合并同類項,就可以得到二項展開式:SKIPIF1<0(SKIPIF1<0).這個公式叫做二項式定理.(2)二項展開式公式中:SKIPIF1<0,SKIPIF1<0等號右邊的多項式叫做SKIPIF1<0的二項展開式.(3)二項式系數(shù)與項的系數(shù)二項展開式中各項的二項式系數(shù)為SKIPIF1<0(SKIPIF1<0),項的系數(shù)是指該項中除變量外的常數(shù)部分,包含符號等.(4)二項展開式的通項二項展開式中的SKIPIF1<0(SKIPIF1<0)叫做二項展開式的通項,用SKIPIF1<0表示,即通項為展開式的第SKIPIF1<0項:SKIPIF1<0.通項體現(xiàn)了二項展開式的項數(shù)、系數(shù)、次數(shù)的變化規(guī)律,是二項式定理的核心,它在求展開式的某些特定項(如含指定冪的項常數(shù)項、中間項、有理項、系數(shù)最大的項等)及其系數(shù)等方面有著廣泛的應(yīng)用.知識點二:二項式系數(shù)的性質(zhì)①對稱性:二項展開式中與首尾兩端距離相等的兩個二項式系數(shù)相等:SKIPIF1<0②增減性:當SKIPIF1<0時,二項式系數(shù)遞增,當SKIPIF1<0時,二項式系數(shù)遞減;③最大值:當SKIPIF1<0為奇數(shù)時,最中間兩項二項式系數(shù)最大;當SKIPIF1<0為偶數(shù)時,最中間一項的二項式系數(shù)最大.知識點三:各二項式系數(shù)和(1)SKIPIF1<0展開式的各二項式系數(shù)和:SKIPIF1<0;(2)奇數(shù)項的二項式系數(shù)和與偶數(shù)項的二項式系數(shù)和相等:SKIPIF1<0第二部分:課前自我評估測試第二部分:課前自我評估測試1.(2022·全國·高二課時練習(xí))若SKIPIF1<0的展開式中各項系數(shù)的和為256,則SKIPIF1<0的值為(
)A.10 B.8 C.6 D.4【答案】D【詳解】解:設(shè)SKIPIF1<0,令SKIPIF1<0得SKIPIF1<0,解得SKIPIF1<0.故選:D2.(2022·云南昆明·高二期中)已知SKIPIF1<0,則SKIPIF1<0(
)A.31 B.32 C.15 D.16【答案】A【詳解】逆用二項式定理得SKIPIF1<0,即SKIPIF1<0,所以n=5,所以SKIPIF1<0.故選:A3.(2022·全國·高二單元測試)SKIPIF1<0的展開式中各項的二項式系數(shù)之和為________.【答案】512【詳解】SKIPIF1<0的展開式中各項的二項式系數(shù)之和為SKIPIF1<0.故答案為:512.4.(2022·廣西貴港·高二期末(理))在SKIPIF1<0展開式中,含SKIPIF1<0的項的系數(shù)是__________.【答案】20【詳解】SKIPIF1<0的展開式中SKIPIF1<0的系數(shù)為SKIPIF1<0,SKIPIF1<0的展開式中SKIPIF1<0的系數(shù)為SKIPIF1<0,故在SKIPIF1<0展開式中,含SKIPIF1<0的項的系數(shù)為20.故答案為:205.(2022·廣東·南海中學(xué)高二階段練習(xí))(1)已知SKIPIF1<0的展開式中第2項與第5項的二項式系數(shù)相等,則SKIPIF1<0__________.(2)SKIPIF1<0__________.【答案】
5
21【詳解】(1)根據(jù)二項式定理可知,SKIPIF1<0,所以SKIPIF1<0;(2)根據(jù)組合數(shù)性質(zhì)可知,SKIPIF1<0,解得SKIPIF1<0,又因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故答案為:5;21第三部分:典型例題剖析第三部分:典型例題剖析題型一:二項展開式的通項及其應(yīng)用角度1:求二項展開式的特定項(或系數(shù))典型例題例題1.(2022·四川廣安·模擬預(yù)測(理))在SKIPIF1<0的展開式中,常數(shù)項為(
)A.-60 B.60 C.-240 D.240【答案】D【詳解】由題知,展開式中第SKIPIF1<0項SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,所以展開式中常數(shù)項為SKIPIF1<0.故選:D例題2.(2022·河北·唐山市第五中學(xué)高三開學(xué)考試)SKIPIF1<0的二項展開式中第三項是(
)A.SKIPIF1<0 B.240 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】由題意可得SKIPIF1<0的二項展開式中第三項是SKIPIF1<0,故選:D同類題型歸類練1.(2022·云南紅河·高二期末)SKIPIF1<0的展開式中的常數(shù)項為________(用數(shù)字作答).【答案】135【詳解】SKIPIF1<0的展開式的通項公式為SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,所以展開式中的常數(shù)項為SKIPIF1<0.故答案為:135.2.(2022·黑龍江·哈爾濱市第三十二中學(xué)校高二期中)求二項式SKIPIF1<0展開式的第7項及含SKIPIF1<0的項的系數(shù).【答案】SKIPIF1<0;SKIPIF1<0.【詳解】解:二項式SKIPIF1<0展開式的通項為SKIPIF1<0所以展開式的第SKIPIF1<0項為SKIPIF1<0,令SKIPIF1<0,所以SKIPIF1<0,所以含SKIPIF1<0的項的系數(shù)為SKIPIF1<0.角度2:兩個二項式之積中特定項(或系數(shù))問題典型例題例題1.(2022·廣東·石門高級中學(xué)高二階段練習(xí))SKIPIF1<0的展開式中的SKIPIF1<0項系數(shù)為(
)A.30 B.10 C.-30 D.-10【答案】B【詳解】因為SKIPIF1<0,SKIPIF1<0的通項為:SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0的系數(shù)為SKIPIF1<0.故選:B.例題2.(2022·江蘇·常州市第一中學(xué)高二期中)若SKIPIF1<0的展開式中SKIPIF1<0的系數(shù)為0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】因為SKIPIF1<0的展開式中SKIPIF1<0的系數(shù)為SKIPIF1<0,SKIPIF1<0的系數(shù)為SKIPIF1<0,所以SKIPIF1<0的展開式中SKIPIF1<0的系數(shù)為SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0.故選:C.例題3.(2022·安徽·合肥工業(yè)大學(xué)附屬中學(xué)高二期末)SKIPIF1<0的展開式中,含SKIPIF1<0項的系數(shù)為(
)A.160 B.140 C.120 D.100【答案】A【詳解】SKIPIF1<0的展開式中,含SKIPIF1<0項為SKIPIF1<0,故選:A例題4.(2022·福建福州·高二期末)在SKIPIF1<0的展開式中,記SKIPIF1<0項的系數(shù)為SKIPIF1<0,則SKIPIF1<0_____.【答案】75【詳解】SKIPIF1<0的展開式中含SKIPIF1<0的項為SKIPIF1<0,含SKIPIF1<0的項為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.故答案為:75.同類題型歸類練1.(2022·四川省資陽中學(xué)高二期末(理))SKIPIF1<0展開式中SKIPIF1<0的系數(shù)為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.20 D.40【答案】A【詳解】解:因為SKIPIF1<0,其中SKIPIF1<0展開式的通項為SKIPIF1<0,所以展開式中SKIPIF1<0的系數(shù)為SKIPIF1<0.故選:A2.(2022·浙江舟山·高二期末)SKIPIF1<0的展開式中的常數(shù)項為___________.【答案】SKIPIF1<0【詳解】SKIPIF1<0,對于SKIPIF1<0,通項公式為SKIPIF1<0SKIPIF1<0,令SKIPIF1<0,得r=3,SKIPIF1<0;對于SKIPIF1<0,通項公式為SKIPIF1<0,不存在常數(shù)項;∴常數(shù)項為-10;故答案為:-10.3.(2022·全國·高二課時練習(xí))已知正整數(shù)SKIPIF1<0,若SKIPIF1<0的展開式中不含SKIPIF1<0的項,則n=______.【答案】10【詳解】因為SKIPIF1<0的展開式的通項為SKIPIF1<0,所以SKIPIF1<0展開式中SKIPIF1<0的系數(shù)為SKIPIF1<0,SKIPIF1<0的系數(shù)為SKIPIF1<0.又SKIPIF1<0,所以若展開式中不含SKIPIF1<0,則SKIPIF1<0,由組合數(shù)的性質(zhì)以及SKIPIF1<0,得SKIPIF1<0.故答案為:SKIPIF1<04.(2022·福建省福州第二中學(xué)高二期末)SKIPIF1<0的展開式中SKIPIF1<0的系數(shù)為___________.【答案】SKIPIF1<0【詳解】SKIPIF1<0展開式的通項為:SKIPIF1<0由于SKIPIF1<0,所以當SKIPIF1<0當時,SKIPIF1<0,當SKIPIF1<0當時,SKIPIF1<0,所以SKIPIF1<0的展開式中SKIPIF1<0的項為,SKIPIF1<0,所以SKIPIF1<0的展開式中SKIPIF1<0的系數(shù)為SKIPIF1<0.故答案為:SKIPIF1<0.角度3:三項展開式中特定項(或系數(shù))問題典型例題例題1.(2022·全國·高二課時練習(xí))SKIPIF1<0的展開式中,SKIPIF1<0的系數(shù)是(
)A.120 B.-120 C.60 D.30【答案】A【詳解】SKIPIF1<0,展開式的第SKIPIF1<0項為SKIPIF1<0,令SKIPIF1<0,可得第3項為SKIPIF1<0,SKIPIF1<0的展開式的第SKIPIF1<0項為SKIPIF1<0,令SKIPIF1<0,可得第3項為SKIPIF1<0,所以SKIPIF1<0的展開式中,SKIPIF1<0的系數(shù)是SKIPIF1<0.故選:A.例題2.(2022·山東濟南·高二期末)SKIPIF1<0的展開式中,所有不含SKIPIF1<0的項的系數(shù)之和為(
)A.16 B.32 C.27 D.81【答案】D【詳解】解:SKIPIF1<0展開式的通項公式為SKIPIF1<0,若展開式中的項不含z,則SKIPIF1<0,此時符合條件的項為SKIPIF1<0展開式中的所有項,令SKIPIF1<0,可得所有不含z的項的系數(shù)之和為SKIPIF1<0,故選:D.例題3.(2022·陜西·寶雞中學(xué)模擬預(yù)測(理))SKIPIF1<0的展開式中SKIPIF1<0的系數(shù)是___________(用數(shù)字作答)【答案】SKIPIF1<0【詳解】SKIPIF1<0SKIPIF1<0展開式通項為:SKIPIF1<0;SKIPIF1<0展開式通項為:SKIPIF1<0;則當SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0的系數(shù)為SKIPIF1<0;當SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0的系數(shù)為SKIPIF1<0;當SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0的系數(shù)為SKIPIF1<0;當SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0的系數(shù)為SKIPIF1<0;SKIPIF1<0的展開式中SKIPIF1<0的系數(shù)為SKIPIF1<0.故答案為:SKIPIF1<0.同類題型歸類練1.(2022·廣東·石門高級中學(xué)高二階段練習(xí))在SKIPIF1<0的展開式中,含SKIPIF1<0項的系數(shù)為(
)A.21 B.15 C.9 D.-6【答案】C【詳解】解:SKIPIF1<0SKIPIF1<0,可知含SKIPIF1<0項的系數(shù)是SKIPIF1<0.故選:C.2.(2022·廣東·中山一中高三階段練習(xí))SKIPIF1<0的展開式中,含SKIPIF1<0項的系數(shù)為___________.【答案】SKIPIF1<0【詳解】SKIPIF1<0相乘的5項中,含SKIPIF1<0的項只能由4個2與1個SKIPIF1<0相乘所得,故含SKIPIF1<0項的系數(shù)為SKIPIF1<0.故答案為:SKIPIF1<03.(2022·全國·高二課時練習(xí))SKIPIF1<0的展開式中SKIPIF1<0的系數(shù)是______(用數(shù)字作答).【答案】-4480【詳解】解:SKIPIF1<0,其展開式的通項為SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0的通項為SKIPIF1<0,令SKIPIF1<0SKIPIF1<0的系數(shù)為SKIPIF1<0.所以SKIPIF1<0的展開式中SKIPIF1<0的系數(shù)是SKIPIF1<0.故答案為:-44804.(2022·上?!?fù)旦附中高二期末)在SKIPIF1<0的展開式中,SKIPIF1<0項的系數(shù)為___________.【答案】SKIPIF1<0【詳解】由題設(shè),展開式通項可寫為SKIPIF1<0,而SKIPIF1<0項中SKIPIF1<0的指數(shù)為0,故SKIPIF1<0項包含于SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0有SKIPIF1<0.故答案為:SKIPIF1<0題型二:二項式系數(shù)與各項的系數(shù)和問題角度1:二項式系數(shù)和與系數(shù)和典型例題例題1.(2022·河南河南·高二期末(理))SKIPIF1<0的展開式中所有奇數(shù)項的二項式系數(shù)和為(
).A.128 B.256 C.512 D.1024【答案】C【詳解】解:SKIPIF1<0的展開式中所有奇數(shù)項的二項式系數(shù)和為SKIPIF1<0,故選:C.例題2.(2022·重慶·四川外國語大學(xué)附屬外國語學(xué)校高二階段練習(xí))已知SKIPIF1<0的展開式中各項的二項式系數(shù)之和為256,則展開式中的常數(shù)項為(
)A.-70 B.70 C.-40 D.30【答案】B【詳解】解:依題意可得SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0展開式的通項為SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,所以展開式中常數(shù)項為SKIPIF1<0;故選:B例題3.(2022·河北唐山·高二期中)已知SKIPIF1<0的展開式中第五項的系數(shù)與第三項的系數(shù)的比是SKIPIF1<0.(1)求展開式中各項系數(shù)的和與二項式系數(shù)的和;(2)求展開式中含SKIPIF1<0的項.【答案】(1)二項式系數(shù)之和為SKIPIF1<0,展開式中各項系數(shù)的和為1(2)SKIPIF1<0(1)解:因為SKIPIF1<0的展開式的通項為SKIPIF1<0,所以第五項系數(shù)為SKIPIF1<0,第三項系數(shù)為SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍),所以令SKIPIF1<0可得展開式中各項系數(shù)的和為1,二項式系數(shù)和為SKIPIF1<0;(2)解:二項式的通項公式為SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以展開式中含SKIPIF1<0的項為SKIPIF1<0.例題4.(2022·廣東茂名·高二期中)已知SKIPIF1<0.求下列各式的值:(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0.【答案】(1)-1(2)2187(3)-1094(1)令SKIPIF1<0,得SKIPIF1<0(2)令SKIPIF1<0,得SKIPIF1<0由SKIPIF1<0的展開式的通項為SKIPIF1<0,知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為負數(shù)所以SKIPIF1<0SKIPIF1<0(3)由SKIPIF1<0,SKIPIF1<0得SKIPIF1<0,所以SKIPIF1<0例題5.(2022·江蘇宿遷·高二階段練習(xí))在①只有第5項的二項式系數(shù)最大,②第4項與第6項的二項式系數(shù)相等,③奇數(shù)項的二項式系數(shù)的和為128,這三個條件中任選一個,補充在下面(橫線處)問題中,解決下面兩個問題.已知,SKIPIF1<0的展開式中,_________.(1)展開式中的第6項;(2)若SKIPIF1<0.①求SKIPIF1<0的值;②求SKIPIF1<0的值.【答案】(1)選①②③答案一樣:SKIPIF1<0(2)①0;②0(1)選①:只有第5項的二項式系數(shù)最大,即只有SKIPIF1<0最大則SKIPIF1<0,則展開式通項公式為SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0;選②:第4項與第6項的二項式系數(shù)相等,即SKIPIF1<0,則SKIPIF1<0,則展開式通項公式為SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0;選③:奇數(shù)項的二項式系數(shù)的和為128,即SKIPIF1<0,則SKIPIF1<0則展開式通項公式為SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0;(2)①由第一問可知:SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0得:SKIPIF1<0,令SKIPIF1<0得:SKIPIF1<0,所以SKIPIF1<0②SKIPIF1<0,求導(dǎo)得:SKIPIF1<0,令SKIPIF1<0得:SKIPIF1<0同類題型歸類練1.(2022·上海中學(xué)東校高二期末)(1)設(shè)SKIPIF1<0,求①展開式中各二項式系數(shù)的和;②SKIPIF1<0的值.【答案】(1)①SKIPIF1<0;②SKIPIF1<0;(2)13或14【詳解】(1)①展開式中各二項式系數(shù)的和為SKIPIF1<0;②令SKIPIF1<0得:SKIPIF1<0,令SKIPIF1<0得:SKIPIF1<0,所以SKIPIF1<0,2.(2022·重慶市永川北山中學(xué)校高二期中)已知SKIPIF1<0SKIPIF1<0的展開式中各項的二項式系數(shù)之和為16.(1)求SKIPIF1<0的值及展開式中各項的系數(shù)之和;(2)求展開式中的常數(shù)項.【答案】(1)SKIPIF1<0;展開式中各項的系數(shù)之和為81.(2)24(1)由題意知,SKIPIF1<0,解得SKIPIF1<0.在SKIPIF1<0展開式中,令x=1,得展開式中各項的系數(shù)之和為SKIPIF1<0.(2)SKIPIF1<0展開式的通項為SKIPIF1<0SKIPIF1<0令SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0.即展開式中的常數(shù)項為24.3.(2022·廣東·新會陳經(jīng)綸中學(xué)高二期中)設(shè)(2-SKIPIF1<0x)10=a0+a1x+a2x2+…+a10·x10,求下列各式的值.(1)求a0;(2)求(a0+a2+…+a10)2-(a1+a3+…+a9)2;(3)求二項式系數(shù)的和.【答案】(1)1024(2)1(3)1024(1)令x=0,得a0=210=1024.(2)令x=1,可得a0+a1+a2+…+a10=(2-SKIPIF1<0)10,①令x=-1,可得a0-a1+a2-a3+…+a10=(2+SKIPIF1<0)10.②結(jié)合①②可得,(a0+a2+…+a10)2-(a1+a3+…+a9)2=(a0+a1+a2+…+a10)(a0-a1+a2-…+a10)=(2-SKIPIF1<0)10×(2+SKIPIF1<0)10=1.(3)二項式系數(shù)的和為SKIPIF1<0+SKIPIF1<0+…+SKIPIF1<0=210=1024.4.(2022·廣東·南海中學(xué)高二階段練習(xí))SKIPIF1<0.求:(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0;(4)展開式中二項式系數(shù)和以及偶數(shù)項的二項式系數(shù)和;(5)SKIPIF1<0.【答案】(1)1(2)SKIPIF1<0(3)SKIPIF1<0(4)SKIPIF1<0,SKIPIF1<0(5)第1012項.(6)4044(1)令SKIPIF1<0,得SKIPIF1<0①.(2)令SKIPIF1<0,得SKIPIF1<0②.由①-②得SKIPIF1<0,SKIPIF1<0.(3)相當于求展開式SKIPIF1<0的系數(shù)和,令SKIPIF1<0,得SKIPIF1<0.(4)展開式中二項式系數(shù)和是SKIPIF1<0.展開式中偶數(shù)項的二項系數(shù)和是SKIPIF1<0.(5)SKIPIF1<0兩邊分別求導(dǎo)得:SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0.5.(2022·重慶長壽·高二期末)二項式的展開式SKIPIF1<0中,中間項的系數(shù)為-160.(1)求SKIPIF1<0的值;(2)求SKIPIF1<0.【答案】(1)-2;(2)729.(1)依題意,SKIPIF1<0展開式的中間項為SKIPIF1<0,因此SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的值是-2.(2)由(1)知SKIPIF1<0,顯然,SKIPIF1<0均為負數(shù),另4項的系數(shù)為正數(shù),取SKIPIF1<0,有SKIPIF1<0,所以SKIPIF1<0.6.(2022·河北邯鄲·高二階段練習(xí))已知SKIPIF1<0(1)求SKIPIF1<0;(2)求SKIPIF1<0.【答案】(1)255(2)32895(1)令SKIPIF1<0,則SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0,①故SKIPIF1<0.(2)令SKIPIF1<0,則SKIPIF1<0,②①+②可得SKIPIF1<0,故SKIPIF1<0.7.(2022·北京石景山·高二期末)在SKIPIF1<0的展開式中,二項式系數(shù)之和為_________;各項系數(shù)之和為_________.(用數(shù)字作答)【答案】
16
256【詳解】在SKIPIF1<0的展開式中,二項式系數(shù)之和為SKIPIF1<0;令SKIPIF1<0,SKIPIF1<0,即各項系數(shù)和為SKIPIF1<0.故答案為:①SKIPIF1<0;②SKIPIF1<0.8.(2022·浙江·湖州市菱湖中學(xué)模擬預(yù)測)二項式SKIPIF1<0的展開式中所有的二項式系數(shù)之和為64,則SKIPIF1<0______,則展開式中含SKIPIF1<0的項的系數(shù)為____________.【答案】
SKIPIF1<0
SKIPIF1<0【詳解】解:由已知可得SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0的展開式的通項公式為SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,則展開式中含SKIPIF1<0項的系數(shù)為SKIPIF1<0,故答案為:SKIPIF1<0;SKIPIF1<0.角度2:展開式的逆應(yīng)用典型例題例題1.(2022·云南昆明·高二期中)已知SKIPIF1<0,則SKIPIF1<0(
)A.31 B.32 C.15 D.16【答案】A【詳解】逆用二項式定理得SKIPIF1<0,即SKIPIF1<0,所以n=5,所以SKIPIF1<0.故選:A例題2.(2022·遼寧·建平縣實驗中學(xué)高二期中)已知SKIPIF1<0,則SKIPIF1<0除以10所得的余數(shù)是(
)A.2 B.3 C.6 D.8【答案】D【詳解】解:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0除以10的余數(shù)為8.故選:D.同類題型歸類練1.(2022·山東·臨沭縣教育和體育局高二期中)SKIPIF1<0除以78的余數(shù)是(
)A.SKIPIF1<0 B.1 C.SKIPIF1<0 D.87【答案】B【詳解】因為SKIPIF1<0所以SKIPIF1<0,除了第一項之外,其余每一項都含有SKIPIF1<0的倍數(shù),所以原式除以SKIPIF1<0的余數(shù)為1.故選:B.2.(2022·北京大興·高二期末)化簡SKIPIF1<0等于(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】由SKIPIF1<0,所以SKIPIF1<0.故選:B3.(2022·遼寧·鞍山一中模擬預(yù)測)數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的值為(
)A.761 B.697 C.518 D.454【答案】D【詳解】解:因為SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0以SKIPIF1<0為首項,SKIPIF1<0為公比的等比數(shù)列,所以SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0SKIPIF1<0又SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,故選:D題型三:項式系數(shù)的性質(zhì)角度1:二項式系數(shù)最大問題典型例題例題1.(2022·山西·祁縣中學(xué)高二階段練習(xí))SKIPIF1<0展開式中二項式系數(shù)最大的項是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0和SKIPIF1<0 D.SKIPIF1<0和SKIPIF1<0【答案】C【詳解】SKIPIF1<0展開式的通項公式為SKIPIF1<0,因為SKIPIF1<0展開式共有8項,所以第4項和第5項的二項式系數(shù)最大,所以SKIPIF1<0展開式中二項式系數(shù)最大的項為SKIPIF1<0和SKIPIF1<0,即為SKIPIF1<0和SKIPIF1<0,故選:C例題2.(2022·全國·高三專題練習(xí))已知SKIPIF1<0的展開式中,第3項的系數(shù)與倒數(shù)第3項的系數(shù)之比為SKIPIF1<0,則展開式中二項式系數(shù)最大的項為第(
)項.A.3 B.4 C.5 D.6【答案】B【詳解】SKIPIF1<0的展開式通項為SKIPIF1<0,第3項為SKIPIF1<0,其系數(shù)為SKIPIF1<0,倒數(shù)第3項為SKIPIF1<0,其系數(shù)為SKIPIF1<0,由題意,SKIPIF1<0,所以SKIPIF1<0,所以展開式中二項式系數(shù)最大的項為SKIPIF1<0,即為展開式的第4項.故選:B.例題3.(2022·山西師范大學(xué)實驗中學(xué)高二階段練習(xí))在SKIPIF1<0的展開式中,偶數(shù)項的二項式系數(shù)之和為128,則展開式中二項式系數(shù)最大的項的系數(shù)為(
)A.-960 B.960 C.1120 D.1680【答案】C【詳解】因SKIPIF1<0的展開式中,偶數(shù)項的二項式系數(shù)之和為128,則有SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0的展開式共有9項,于是得展開式的第5項的二項式系數(shù)最大,SKIPIF1<0,所以展開式中二項式系數(shù)最大的項的系數(shù)為1120.故選:C例題4.(2022·全國·高二課時練習(xí))設(shè)SKIPIF1<0若SKIPIF1<0,則展開式中二項式系數(shù)最大的項是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】由題可知,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0的展開式中,通項為:SKIPIF1<0,則常數(shù)項對應(yīng)的系數(shù)為:SKIPIF1<0,即SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,解得:SKIPIF1<0,則SKIPIF1<0展開式中二項式系數(shù)最大為:SKIPIF1<0,則二項式系數(shù)最大的項為:SKIPIF1<0故選:C.同類題型歸類練1.(2022·全國·高二課時練習(xí))在SKIPIF1<0的展開式中,只有第SKIPIF1<0項的二項式系數(shù)最大,則SKIPIF1<0(
)A.4 B.5 C.6 D.7【答案】C【詳解】在SKIPIF1<0的展開式中,只有第4項的二項式系數(shù)最大,即中間項SKIPIF1<0項的二項式系數(shù)最大,即SKIPIF1<0,解得:SKIPIF1<0故選:C.2.(2022·廣東·廣州市禺山高級中學(xué)高二期中)設(shè)SKIPIF1<0若SKIPIF1<0,則展開式中二項式系數(shù)最大的項是A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】解:由題可知,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0的展開式中,通項公式為:SKIPIF1<0,則常數(shù)項對應(yīng)的系數(shù)為:SKIPIF1<0,即SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,解得:SKIPIF1<0,則SKIPIF1<0展開式中二項式系數(shù)最大為:SKIPIF1<0,則二項式系數(shù)最大的項為:SKIPIF1<0.故選:A.3.(2022·天津市濱海新區(qū)塘沽第一中學(xué)三模)SKIPIF1<0的展開式中,二項式系數(shù)最大的項的系數(shù)是___________.【答案】SKIPIF1<0【詳解】解:因為SKIPIF1<0的展開式有SKIPIF1<0項,所以第SKIPIF1<0項的二項式系數(shù)最大,所以SKIPIF1<0的展開式中的二項式系數(shù)最大的項為SKIPIF1<0.所以,SKIPIF1<0的展開式中,二項式系數(shù)最大的項的系數(shù)是SKIPIF1<0.故答案為:SKIPIF1<04.(2022·河北·高碑店市崇德實驗中學(xué)高二階段練習(xí))已知SKIPIF1<0的展開式中,第4項的系數(shù)與倒數(shù)第4項的系數(shù)之比為SKIPIF1<0,則展開式中最大的二項式系數(shù)值為______.【答案】SKIPIF1<0【詳解】由題意,SKIPIF1<0的展開式的通項為SKIPIF1<0,所以展開式中第4項的系數(shù)為SKIPIF1<0,倒數(shù)第4項的系數(shù)為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,得SKIPIF1<0,所以展開式中最大的二項式系數(shù)值為SKIPIF1<0或SKIPIF1<0.故答案為:SKIPIF1<0角度2:系數(shù)最大問題典型例題例題1.(2022·全國·高二課時練習(xí))設(shè)SKIPIF1<0,若SKIPIF1<0,則展開式中系數(shù)最大的項是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】因為SKIPIF1<0,所以當SKIPIF1<0時,可得SKIPIF1<0;當SKIPIF1<0時,可得SKIPIF1<0.又SKIPIF1<0,所以SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0的展開式中系數(shù)最大的項為第4項,即SKIPIF1<0,故選:B例題2.(2022·全國·高三專題練習(xí)(理))若SKIPIF1<0的展開式中各項的二項式系數(shù)之和為512,且第6項的系數(shù)最大,則SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度餐飲泔水回收與環(huán)保設(shè)施投資合同3篇
- 二零二五年礦山土地及資源使用權(quán)轉(zhuǎn)讓合同3篇
- 二零二五版白糖進口許可證申請代理服務(wù)合同下載2篇
- 二零二五年度駕駛員押運員安全責任及培訓(xùn)合同3篇
- 二零二五版企事業(yè)單位節(jié)能環(huán)保辦公電腦采購合同2篇
- 二零二五版電子商務(wù)平臺借款及庫存商品質(zhì)押合同3篇
- 二零二五年紡織原料市場調(diào)研與分析合同2篇
- 小區(qū)下水管網(wǎng)清理疏通承包合同(2篇)
- 二零二五版房產(chǎn)買賣合同含抵押權(quán)轉(zhuǎn)移及貸款利率協(xié)商協(xié)議0183篇
- 2025年度農(nóng)業(yè)科技推廣財產(chǎn)贈與合同3篇
- HSK標準教程5上-課件-L1
- 人教版五年級下冊數(shù)學(xué)預(yù)習(xí)單、學(xué)習(xí)單、檢測單
- JC-T 746-2023 混凝土瓦標準規(guī)范
- 如何落實管業(yè)務(wù)必須管安全
- 四年級上冊三位數(shù)乘除兩位數(shù)計算題
- 《水電工程招標設(shè)計報告編制規(guī)程》
- 2023年甘肅蘭州中考道德與法治試題及答案
- 生產(chǎn)工廠管理手冊
- 項目工地春節(jié)放假安排及安全措施
- 印染廠安全培訓(xùn)課件
- 2023機器人用精密減速器重復(fù)定位精度測試方法
評論
0/150
提交評論