版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
山西省忻州市岢嵐中學(xué)2025屆高三下學(xué)期第一次在線月考數(shù)學(xué)試題注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件2.某三棱錐的三視圖如圖所示,那么該三棱錐的表面中直角三角形的個(gè)數(shù)為()A.1 B.2 C.3 D.03.已知集合,,則()A. B. C. D.4.根據(jù)黨中央關(guān)于“精準(zhǔn)”脫貧的要求,我市某農(nóng)業(yè)經(jīng)濟(jì)部門(mén)派四位專家對(duì)三個(gè)縣區(qū)進(jìn)行調(diào)研,每個(gè)縣區(qū)至少派一位專家,則甲,乙兩位專家派遣至同一縣區(qū)的概率為()A. B. C. D.5.已知集合,,若,則()A.4 B.-4 C.8 D.-86.已知四棱錐,底面ABCD是邊長(zhǎng)為1的正方形,,平面平面ABCD,當(dāng)點(diǎn)C到平面ABE的距離最大時(shí),該四棱錐的體積為()A. B. C. D.17.下列函數(shù)中,在區(qū)間上為減函數(shù)的是()A. B. C. D.8.設(shè)集合、是全集的兩個(gè)子集,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.已知函數(shù),不等式對(duì)恒成立,則的取值范圍為()A. B. C. D.10.已知,,,若,則正數(shù)可以為()A.4 B.23 C.8 D.1711.設(shè),若函數(shù)在區(qū)間上有三個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是()A. B. C. D.12.如圖所示,網(wǎng)格紙上小正方形的邊長(zhǎng)為,粗線畫(huà)出的是某多面體的三視圖,則該幾何體的各個(gè)面中最大面的面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知的終邊過(guò)點(diǎn),若,則__________.14.設(shè),則“”是“”的__________條件.15.已知函數(shù),且,,使得,則實(shí)數(shù)m的取值范圍是______.16.若且時(shí),不等式恒成立,則實(shí)數(shù)a的取值范圍為_(kāi)_______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知滿足,且,求的值及的面積.(從①,②,③這三個(gè)條件中選一個(gè),補(bǔ)充到上面問(wèn)題中,并完成解答.)18.(12分)已知圓,定點(diǎn),為平面內(nèi)一動(dòng)點(diǎn),以線段為直徑的圓內(nèi)切于圓,設(shè)動(dòng)點(diǎn)的軌跡為曲線(1)求曲線的方程(2)過(guò)點(diǎn)的直線與交于兩點(diǎn),已知點(diǎn),直線分別與直線交于兩點(diǎn),線段的中點(diǎn)是否在定直線上,若存在,求出該直線方程;若不是,說(shuō)明理由.19.(12分)如圖1,在等腰中,,,分別為,的中點(diǎn),為的中點(diǎn),在線段上,且。將沿折起,使點(diǎn)到的位置(如圖2所示),且。(1)證明:平面;(2)求平面與平面所成銳二面角的余弦值20.(12分)已知函數(shù),的最大值為.求實(shí)數(shù)b的值;當(dāng)時(shí),討論函數(shù)的單調(diào)性;當(dāng)時(shí),令,是否存在區(qū)間,,使得函數(shù)在區(qū)間上的值域?yàn)??若存在,求?shí)數(shù)k的取值范圍;若不存在,請(qǐng)說(shuō)明理由.21.(12分)在ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知,(Ⅰ)求的大??;(Ⅱ)若,求面積的最大值.22.(10分)已知函數(shù).(1)求不等式的解集;(2)若存在實(shí)數(shù),使得不等式成立,求實(shí)數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】
本題根據(jù)基本不等式,結(jié)合選項(xiàng),判斷得出充分性成立,利用“特殊值法”,通過(guò)特取的值,推出矛盾,確定必要性不成立.題目有一定難度,注重重要知識(shí)、基礎(chǔ)知識(shí)、邏輯推理能力的考查.【詳解】當(dāng)時(shí),,則當(dāng)時(shí),有,解得,充分性成立;當(dāng)時(shí),滿足,但此時(shí),必要性不成立,綜上所述,“”是“”的充分不必要條件.易出現(xiàn)的錯(cuò)誤有,一是基本不等式掌握不熟,導(dǎo)致判斷失誤;二是不能靈活的應(yīng)用“賦值法”,通過(guò)特取的值,從假設(shè)情況下推出合理結(jié)果或矛盾結(jié)果.2.C【解析】
由三視圖還原原幾何體,借助于正方體可得三棱錐的表面中直角三角形的個(gè)數(shù).【詳解】由三視圖還原原幾何體如圖,其中,,為直角三角形.∴該三棱錐的表面中直角三角形的個(gè)數(shù)為3.故選:C.本小題主要考查由三視圖還原為原圖,屬于基礎(chǔ)題.3.D【解析】
先求出集合B,再與集合A求交集即可.【詳解】由已知,,故,所以.故選:D.本題考查集合的交集運(yùn)算,考查學(xué)生的基本運(yùn)算能力,是一道容易題.4.A【解析】
每個(gè)縣區(qū)至少派一位專家,基本事件總數(shù),甲,乙兩位專家派遣至同一縣區(qū)包含的基本事件個(gè)數(shù),由此能求出甲,乙兩位專家派遣至同一縣區(qū)的概率.【詳解】派四位專家對(duì)三個(gè)縣區(qū)進(jìn)行調(diào)研,每個(gè)縣區(qū)至少派一位專家基本事件總數(shù):甲,乙兩位專家派遣至同一縣區(qū)包含的基本事件個(gè)數(shù):甲,乙兩位專家派遣至同一縣區(qū)的概率為:本題正確選項(xiàng):本題考查概率的求法,考查古典概型等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.5.B【解析】
根據(jù)交集的定義,,可知,代入計(jì)算即可求出.【詳解】由,可知,又因?yàn)?,所以時(shí),,解得.故選:B.本題考查交集的概念,屬于基礎(chǔ)題.6.B【解析】
過(guò)點(diǎn)E作,垂足為H,過(guò)H作,垂足為F,連接EF.因?yàn)槠矫鍭BE,所以點(diǎn)C到平面ABE的距離等于點(diǎn)H到平面ABE的距離.設(shè),將表示成關(guān)于的函數(shù),再求函數(shù)的最值,即可得答案.【詳解】過(guò)點(diǎn)E作,垂足為H,過(guò)H作,垂足為F,連接EF.因?yàn)槠矫嫫矫鍭BCD,所以平面ABCD,所以.因?yàn)榈酌鍭BCD是邊長(zhǎng)為1的正方形,,所以.因?yàn)槠矫鍭BE,所以點(diǎn)C到平面ABE的距離等于點(diǎn)H到平面ABE的距離.易證平面平面ABE,所以點(diǎn)H到平面ABE的距離,即為H到EF的距離.不妨設(shè),則,.因?yàn)?,所以,所以,?dāng)時(shí),等號(hào)成立.此時(shí)EH與ED重合,所以,.故選:B.本題考查空間中點(diǎn)到面的距離的最值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查空間想象能力和運(yùn)算求解能力,求解時(shí)注意輔助線及面面垂直的應(yīng)用.7.C【解析】
利用基本初等函數(shù)的單調(diào)性判斷各選項(xiàng)中函數(shù)在區(qū)間上的單調(diào)性,進(jìn)而可得出結(jié)果.【詳解】對(duì)于A選項(xiàng),函數(shù)在區(qū)間上為增函數(shù);對(duì)于B選項(xiàng),函數(shù)在區(qū)間上為增函數(shù);對(duì)于C選項(xiàng),函數(shù)在區(qū)間上為減函數(shù);對(duì)于D選項(xiàng),函數(shù)在區(qū)間上為增函數(shù).故選:C.本題考查函數(shù)在區(qū)間上單調(diào)性的判斷,熟悉一些常見(jiàn)的基本初等函數(shù)的單調(diào)性是判斷的關(guān)鍵,屬于基礎(chǔ)題.8.C【解析】
作出韋恩圖,數(shù)形結(jié)合,即可得出結(jié)論.【詳解】如圖所示,,同時(shí).故選:C.本題考查集合關(guān)系及充要條件,注意數(shù)形結(jié)合方法的應(yīng)用,屬于基礎(chǔ)題.9.C【解析】
確定函數(shù)為奇函數(shù),且單調(diào)遞減,不等式轉(zhuǎn)化為,利用雙勾函數(shù)單調(diào)性求最值得到答案.【詳解】是奇函數(shù),,易知均為減函數(shù),故且在上單調(diào)遞減,不等式,即,結(jié)合函數(shù)的單調(diào)性可得,即,設(shè),,故單調(diào)遞減,故,當(dāng),即時(shí)取最大值,所以.故選:.本題考查了根據(jù)函數(shù)單調(diào)性和奇偶性解不等式,參數(shù)分離求最值是解題的關(guān)鍵.10.C【解析】
首先根據(jù)對(duì)數(shù)函數(shù)的性質(zhì)求出的取值范圍,再代入驗(yàn)證即可;【詳解】解:∵,∴當(dāng)時(shí),滿足,∴實(shí)數(shù)可以為8.故選:C本題考查對(duì)數(shù)函數(shù)的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.11.D【解析】令,可得.在坐標(biāo)系內(nèi)畫(huà)出函數(shù)的圖象(如圖所示).當(dāng)時(shí),.由得.設(shè)過(guò)原點(diǎn)的直線與函數(shù)的圖象切于點(diǎn),則有,解得.所以當(dāng)直線與函數(shù)的圖象切時(shí).又當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),有,解得.結(jié)合圖象可得當(dāng)直線與函數(shù)的圖象有3個(gè)交點(diǎn)時(shí),實(shí)數(shù)的取值范圍是.即函數(shù)在區(qū)間上有三個(gè)零點(diǎn)時(shí),實(shí)數(shù)的取值范圍是.選D.點(diǎn)睛:已知函數(shù)零點(diǎn)的個(gè)數(shù)(方程根的個(gè)數(shù))求參數(shù)值(取值范圍)的方法(1)直接法:直接求解方程得到方程的根,再通過(guò)解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域問(wèn)題加以解決;(3)數(shù)形結(jié)合法:先對(duì)解析式變形,在同一平面直角坐標(biāo)系中,畫(huà)出函數(shù)的圖象,然后數(shù)形結(jié)合求解,對(duì)于一些比較復(fù)雜的函數(shù)的零點(diǎn)問(wèn)題常用此方法求解.12.B【解析】
根據(jù)三視圖可以得到原幾何體為三棱錐,且是有三條棱互相垂直的三棱錐,根據(jù)幾何體的各面面積可得最大面的面積.【詳解】解:分析題意可知,如下圖所示,該幾何體為一個(gè)正方體中的三棱錐,最大面的表面邊長(zhǎng)為的等邊三角形,故其面積為,故選B.本題考查了幾何體的三視圖問(wèn)題,解題的關(guān)鍵是要能由三視圖解析出原幾何體,從而解決問(wèn)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
】由題意利用任意角的三角函數(shù)的定義,求得的值.【詳解】∵的終邊過(guò)點(diǎn),若,.即答案為-2.本題主要考查任意角的三角函數(shù)的定義和誘導(dǎo)公式,屬基礎(chǔ)題.14.充分必要【解析】
根據(jù)充分條件和必要條件的定義可判斷兩者之間的條件關(guān)系.【詳解】當(dāng)時(shí),有,故“”是“”的充分條件.當(dāng)時(shí),有,故“”是“”的必要條件.故“”是“”的充分必要條件,故答案為:充分必要.本題考查充分必要條件的判斷,可利用定義來(lái)判斷,也可以根據(jù)兩個(gè)條件構(gòu)成命題及逆命題的真假來(lái)判斷,還可以利用兩個(gè)條件對(duì)應(yīng)的集合的包含關(guān)系來(lái)判斷,本題屬于容易題.15.【解析】
根據(jù)條件轉(zhuǎn)化為函數(shù)在上的值域是函數(shù)在上的值域的子集;分別求值域即可得到結(jié)論.【詳解】解:依題意,,即函數(shù)在上的值域是函數(shù)在上的值域的子集.因?yàn)樵谏系闹涤驗(yàn)椋ǎ┗颍ǎ?,在上的值域?yàn)?,故或,解得故答案為?本題考查了分段函數(shù)的值域求參數(shù)的取值范圍,屬于中檔題.16.【解析】
將不等式兩邊同時(shí)平方進(jìn)行變形,然后得到對(duì)應(yīng)不等式組,對(duì)的取值進(jìn)行分類,將問(wèn)題轉(zhuǎn)化為二次函數(shù)在區(qū)間上恒正、恒負(fù)時(shí)求參數(shù)范圍,列出對(duì)應(yīng)不等式組,即可求解出的取值范圍.【詳解】因?yàn)?,所以,所以,所以,所以或,?dāng)時(shí),對(duì)且不成立,當(dāng)時(shí),取,顯然不滿足,所以,所以,解得;當(dāng)時(shí),取,顯然不滿足,所以,所以,解得,綜上可得的取值范圍是:.故答案為:.本題考查根據(jù)不等式恒成立求解參數(shù)范圍,難度較難.根據(jù)不等式恒成立求解參數(shù)范圍的兩種常用方法:(1)分類討論法:分析參數(shù)的臨界值,對(duì)參數(shù)分類討論;(2)參變分離法:將參數(shù)單獨(dú)分離出來(lái),再以函數(shù)的最值與參數(shù)的大小關(guān)系求解出參數(shù)范圍.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.見(jiàn)解析【解析】
選擇①時(shí):,,計(jì)算,根據(jù)正弦定理得到,計(jì)算面積得到答案;選擇②時(shí),,,故,為鈍角,故無(wú)解;選擇③時(shí),,根據(jù)正弦定理解得,,根據(jù)正弦定理得到,計(jì)算面積得到答案.【詳解】選擇①時(shí):,,故.根據(jù)正弦定理:,故,故.選擇②時(shí),,,故,為鈍角,故無(wú)解.選擇③時(shí),,根據(jù)正弦定理:,故,解得,.根據(jù)正弦定理:,故,故.本題考查了三角恒等變換,正弦定理,面積公式,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.18.(1);(2)存在,.【解析】
(1)設(shè)以為直徑的圓心為,切點(diǎn)為,取關(guān)于軸的對(duì)稱點(diǎn),連接,計(jì)算得到,故軌跡為橢圓,計(jì)算得到答案.(2)設(shè)直線的方程為,設(shè),聯(lián)立方程得到,,計(jì)算,得到答案.【詳解】(1)設(shè)以為直徑的圓心為,切點(diǎn)為,則,取關(guān)于軸的對(duì)稱點(diǎn),連接,故,所以點(diǎn)的軌跡是以為焦點(diǎn),長(zhǎng)軸為4的橢圓,其中,曲線方程為.(2)設(shè)直線的方程為,設(shè),直線的方程為,同理,所以,即,聯(lián)立,所以,代入得,所以點(diǎn)都在定直線上.本題考查了軌跡方程,定直線問(wèn)題,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.19.(1)證明見(jiàn)解析(2)【解析】
(1)要證明線面平行,需證明線線平行,取的中點(diǎn),連接,根據(jù)條件證明,即;(2)以為原點(diǎn),所在直線為軸,過(guò)作平行于的直線為軸,所在直線為軸,建立空間直角坐標(biāo)系,求兩個(gè)平面的法向量,利用法向量求二面角的余弦值.【詳解】(1)證明:取的中點(diǎn),連接.∵,∴為的中點(diǎn).又為的中點(diǎn),∴.依題意可知,則四邊形為平行四邊形,∴,從而.又平面,平面,∴平面.(2),且,平面,平面,,,且,平面,以為原點(diǎn),所在直線為軸,過(guò)作平行于的直線為軸,所在直線為軸,建立空間直角坐標(biāo)系,不妨設(shè),則,,,,,,,,.設(shè)平面的法向量為,則,即,令,得.設(shè)平面的法向量為,則,即,令,得.從而,故平面與平面所成銳二面角的余弦值為.本題考查線面平行的證明和空間坐標(biāo)法解決二面角的問(wèn)題,意在考查空間想象能力,推理證明和計(jì)算能力,屬于中檔題型,證明線面平行,或證明面面平行時(shí),關(guān)鍵是證明線線平行,所以做輔助線或證明時(shí),需考慮構(gòu)造中位線或平行四邊形,這些都是證明線線平行的常方法.20.(1);(2)時(shí),在單調(diào)增;時(shí),在單調(diào)遞減,在單調(diào)遞增;時(shí),同理在單調(diào)遞減,在單調(diào)遞增;(3)不存在.【解析】分析:(1)利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,可得當(dāng)時(shí),取得極大值,也是最大值,由,可得結(jié)果;(2)求出,分三種情況討論的范圍,在定義域內(nèi),分別令求得的范圍,可得函數(shù)增區(qū)間,求得的范圍,可得函數(shù)的減區(qū)間;(3)假設(shè)存在區(qū)間,使得函數(shù)在區(qū)間上的值域是,則,問(wèn)題轉(zhuǎn)化為關(guān)于的方程在區(qū)間內(nèi)是否存在兩個(gè)不相等的實(shí)根,進(jìn)而可得結(jié)果.詳解:(1)由題意得,令,解得,當(dāng)時(shí),,函數(shù)單調(diào)遞增;當(dāng)時(shí),,函數(shù)單調(diào)遞減.所以當(dāng)時(shí),取得極大值,也是最大值,所以,解得.(2)的定義域?yàn)?①即,則,故在單調(diào)增②若,而,故,則當(dāng)時(shí),;當(dāng)及時(shí),故在單調(diào)遞減,在單調(diào)遞增.③若,即,同理在單調(diào)遞減,在單調(diào)遞增(3)由(1)知,所以,令,則對(duì)恒成立,所以在區(qū)間內(nèi)單調(diào)遞增,所以恒成立,所以函數(shù)在區(qū)間內(nèi)單調(diào)遞增.假設(shè)存在區(qū)間,使得函數(shù)在區(qū)間上的值域是,則,問(wèn)題轉(zhuǎn)化為關(guān)于的方程在區(qū)間內(nèi)是否存在兩個(gè)不相等的實(shí)根,即方程在區(qū)間內(nèi)是否存在兩個(gè)不相等的實(shí)根,令,,則,設(shè),,則對(duì)恒成立,所以函數(shù)在區(qū)間內(nèi)單調(diào)遞增,故恒成立,所以,所以函數(shù)在區(qū)間內(nèi)單調(diào)遞增,所以方程在區(qū)間內(nèi)不存在兩個(gè)不相等的實(shí)根.綜上所述,不存在區(qū)間,使得函數(shù)在區(qū)間上的值域是.點(diǎn)睛:本題主要考查利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性以及函數(shù)的最值值,屬于難題.求函數(shù)極值、最值的步驟:(1)確定函數(shù)的定義域;(2)求導(dǎo)數(shù);(3)解方程求出函數(shù)定義域內(nèi)的所有根;(4)列表檢查在的根左右兩側(cè)值的符號(hào),如果左正右負(fù)(左增右減),那么在處取極大值,如果左負(fù)右正(左減
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 投資合作協(xié)議樣本
- 東風(fēng)商用車合作協(xié)議
- 2025版土地整治項(xiàng)目土地承包協(xié)議3篇
- 2025年西安建工園林工程有限公司招聘筆試參考題庫(kù)含答案解析
- 2025年度個(gè)人二手房交易合同模板綠色環(huán)保型2篇
- 2025年度定制化個(gè)人購(gòu)房合同范本2篇
- 2025年全球及中國(guó)氣動(dòng)式高壓無(wú)氣噴涂機(jī)行業(yè)頭部企業(yè)市場(chǎng)占有率及排名調(diào)研報(bào)告
- 2025版?zhèn)€人退股協(xié)議書(shū):私募股權(quán)退出及收益分配合同4篇
- 2024年教師資格之中學(xué)綜合素質(zhì)模擬題庫(kù)及答案
- 2025年個(gè)人二手車買(mǎi)賣(mài)合同(帶車輛狀況認(rèn)證服務(wù))
- 2025貴州貴陽(yáng)市屬事業(yè)單位招聘筆試和高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2024年住院醫(yī)師規(guī)范化培訓(xùn)師資培訓(xùn)理論考試試題
- 期末綜合測(cè)試卷(試題)-2024-2025學(xué)年五年級(jí)上冊(cè)數(shù)學(xué)人教版
- 招標(biāo)采購(gòu)基礎(chǔ)知識(shí)培訓(xùn)
- 2024年廣東省公務(wù)員錄用考試《行測(cè)》試題及答案解析
- 電力系統(tǒng)分布式模型預(yù)測(cè)控制方法綜述與展望
- 五年級(jí)口算題卡每天100題帶答案
- 結(jié)構(gòu)力學(xué)本構(gòu)模型:斷裂力學(xué)模型:斷裂力學(xué)實(shí)驗(yàn)技術(shù)教程
- 2024年貴州省中考理科綜合試卷(含答案)
- 無(wú)人機(jī)技術(shù)與遙感
- 恩施自治州建始東升煤礦有限責(zé)任公司東升煤礦礦產(chǎn)資源開(kāi)發(fā)利用與生態(tài)復(fù)綠方案
評(píng)論
0/150
提交評(píng)論