版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022屆山西省大同市中考四模數(shù)學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.關于x的方程3x+2a=x﹣5的解是負數(shù),則a的取值范圍是()A.a< B.a> C.a<﹣ D.a>﹣2.根據下表中的二次函數(shù)的自變量與函數(shù)的對應值,可判斷該二次函數(shù)的圖象與軸().
…
…
…
…A.只有一個交點 B.有兩個交點,且它們分別在軸兩側C.有兩個交點,且它們均在軸同側 D.無交點3.某大學生利用課余時間在網上銷售一種成本為50元/件的商品,每月的銷售量y(件)與銷售單價x(元/件)之間的函數(shù)關系式為y=–4x+440,要獲得最大利潤,該商品的售價應定為A.60元B.70元C.80元D.90元4.方程2x2﹣x﹣3=0的兩個根為()A.x1=,x2=﹣1 B.x1=﹣,x2=1 C.x1=,x2=﹣3 D.x1=﹣,x2=35.若正多邊形的一個內角是150°,則該正多邊形的邊數(shù)是()A.6B.12C.16D.186.小明早上從家騎自行車去上學,先走平路到達點A,再走上坡路到達點B,最后走下坡路到達學校,小明騎自行車所走的路程s(單位:千米)與他所用的時間t(單位:分鐘)的關系如圖所示,放學后,小明沿原路返回,且走平路、上坡路、下坡路的速度分別保持和去上學時一致,下列說法:①小明家距學校4千米;②小明上學所用的時間為12分鐘;③小明上坡的速度是0.5千米/分鐘;④小明放學回家所用時間為15分鐘.其中正確的個數(shù)是()A.1個 B.2個 C.3個 D.4個7.如圖是由5個大小相同的正方體組成的幾何體,則該幾何體的左視圖是()A. B.C. D.8.如圖,在平行四邊形ABCD中,F(xiàn)是邊AD上的一點,射線CF和BA的延長線交于點E,如果,那么的值是()A. B. C. D.9.已知是二元一次方程組的解,則的算術平方根為()A.±2 B. C.2 D.410.下列運算正確的是()A.﹣3a+a=﹣4a B.3x2?2x=6x2C.4a2﹣5a2=a2 D.(2x3)2÷2x2=2x4二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在△ABC中,D,E分別是AB,AC邊上的點,DE∥BC.若AD=6,BD=2,DE=3,則BC=______.12.將兩張三角形紙片如圖擺放,量得∠1+∠2+∠3+∠4=220°,則∠5=__.13.如圖,點是反比例函數(shù)圖像上的兩點(點在點左側),過點作軸于點,交于點,延長交軸于點,已知,,則的值為__________.14.一個圓錐的母線長15CM.高為9CM.則側面展開圖的圓心角________。15.有四張質地、大小、反面完全相同的不透明卡片,正面分別寫著數(shù)字1,2,3,4,現(xiàn)把它們的正面向下,隨機擺放在桌面上,從中任意抽出一張,則抽出的數(shù)字是奇數(shù)的概率是.16.如圖,在平行四邊形ABCD中,E為邊BC上一點,AC與DE相交于點F,若CE=2EB,S△AFD=9,則S△EFC等于_____.三、解答題(共8題,共72分)17.(8分)列方程解應用題:某景區(qū)一景點要限期完成,甲工程隊單獨做可提前一天完成,乙工程隊獨做要誤期6天,現(xiàn)由兩工程隊合做4天后,余下的由乙工程隊獨做,正好如期完成,則工程期限為多少天?18.(8分)如圖,△ABC和△BEC均為等腰直角三角形,且∠ACB=∠BEC=90°,AC=4,點P為線段BE延長線上一點,連接CP以CP為直角邊向下作等腰直角△CPD,線段BE與CD相交于點F.(1)求證:;(2)連接BD,請你判斷AC與BD有什么位置關系?并說明理由;(3)若PE=1,求△PBD的面積.19.(8分)已知:如圖,在四邊形ABCD中,AD∥BC,點E為CD邊上一點,AE與BE分別為∠DAB和∠CBA的平分線.(1)作線段AB的垂直平分線交AB于點O,并以AB為直徑作⊙O(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);(2)在(1)的條件下,⊙O交邊AD于點F,連接BF,交AE于點G,若AE=4,sin∠AGF=4520.(8分)如圖,在正方形ABCD的外側,作兩個等邊三角形ABE和ADF,連結ED與FC交于點M,則圖中≌,可知,求得______.如圖,在矩形的外側,作兩個等邊三角形ABE和ADF,連結ED與FC交于點M.求證:.若,求的度數(shù).21.(8分)許昌芙蓉湖位于許昌市水系建設總體規(guī)劃中部,上游接納清泥河來水,下游為鹿鳴湖等水系供水,承擔著承上啟下的重要作用,是利用有限的水資源、形成良好的水生態(tài)環(huán)境打造生態(tài)宜居城市的重要部分.某校課外興趣小組想測量位于芙蓉湖兩端的A,B兩點之間的距離他沿著與直線AB平行的道路EF行走,走到點C處,測得∠ACF=45°,再向前走300米到點D處,測得∠BDF=60°.若直線AB與EF之間的距離為200米,求A,B兩點之間的距離(結果保留一位小數(shù))22.(10分)如圖1,在平面直角坐標系中,直線y=﹣x+1與拋物線y=ax2+bx+c(a≠0)相交于點A(1,0)和點D(﹣4,5),并與y軸交于點C,拋物線的對稱軸為直線x=﹣1,且拋物線與x軸交于另一點B.(1)求該拋物線的函數(shù)表達式;(2)若點E是直線下方拋物線上的一個動點,求出△ACE面積的最大值;(3)如圖2,若點M是直線x=﹣1的一點,點N在拋物線上,以點A,D,M,N為頂點的四邊形能否成為平行四邊形?若能,請直接寫出點M的坐標;若不能,請說明理由.23.(12分)如圖,點P是菱形ABCD的對角線BD上一點,連接CP并延長,交AD于E,交BA的延長線點F.問:圖中△APD與哪個三角形全等?并說明理由;求證:△APE∽△FPA;猜想:線段PC,PE,PF之間存在什么關系?并說明理由.24.如圖,已知△ABC,按如下步驟作圖:①分別以A、C為圓心,以大于12②連接MN,分別交AB、AC于點D、O;③過C作CE∥AB交MN于點E,連接AE、CD.(1)求證:四邊形ADCE是菱形;(2)當∠ACB=90°,BC=6,△ADC的周長為18時,求四邊形ADCE的面積.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
先解方程求出x,再根據解是負數(shù)得到關于a的不等式,解不等式即可得.【詳解】解方程3x+2a=x﹣5得x=,因為方程的解為負數(shù),所以<0,解得:a>﹣.【點睛】本題考查了一元一次方程的解,以及一元一次不等式的解法,解一元一次不等式時,要注意的是:若在不等式左右兩邊同時乘以或除以同一個負數(shù)時,不等號方向要改變.2、B【解析】
根據表中數(shù)據可得拋物線的對稱軸為x=1,拋物線的開口方向向上,再根據拋物線的對稱性即可作出判斷.【詳解】解:由題意得拋物線的對稱軸為x=1,拋物線的開口方向向上則該二次函數(shù)的圖像與軸有兩個交點,且它們分別在軸兩側故選B.【點睛】本題考查二次函數(shù)的性質,屬于基礎應用題,只需學生熟練掌握拋物線的對稱性,即可完成.3、C【解析】設銷售該商品每月所獲總利潤為w,則w=(x–50)(–4x+440)=–4x2+640x–22000=–4(x–80)2+3600,∴當x=80時,w取得最大值,最大值為3600,即售價為80元/件時,銷售該商品所獲利潤最大,故選C.4、A【解析】
利用因式分解法解方程即可.【詳解】解:(2x-3)(x+1)=0,2x-3=0或x+1=0,所以x1=,x2=-1.故選A.【點睛】本題考查了解一元二次方程-因式分解法:因式分解法就是先把方程的右邊化為0,再把左邊通過因式分解化為兩個一次因式的積的形式,那么這兩個因式的值就都有可能為0,這就能得到兩個一元一次方程的解,這樣也就把原方程進行了降次,把解一元二次方程轉化為解一元一次方程的問題了(數(shù)學轉化思想).5、B【解析】設多邊形的邊數(shù)為n,則有(n-2)×180°=n×150°,解得:n=12,故選B.6、C【解析】
從開始到A是平路,是1千米,用了3分鐘,則從學校到家門口走平路仍用3分鐘,根據圖象求得上坡(AB段)、下坡(B到學校段)的路程與速度,利用路程除以速度求得每段所用的時間,相加即可求解.【詳解】解:①小明家距學校4千米,正確;②小明上學所用的時間為12分鐘,正確;③小明上坡的速度是千米/分鐘,錯誤;④小明放學回家所用時間為3+2+10=15分鐘,正確;故選:C.【點睛】本題考查利用函數(shù)的圖象解決實際問題,正確理解函數(shù)圖象橫縱坐標表示的意義,理解問題的過程,就能夠通過圖象得到函數(shù)問題的相應解決.需注意計算單位的統(tǒng)一.7、B【解析】
找到從左面看所得到的圖形即可,注意所有的看到的棱都應表現(xiàn)在主視圖中.【詳解】解:從左面看易得下面一層有2個正方形,上面一層左邊有1個正方形.故選:B.【點睛】本題考查了三視圖的知識,左視圖是從物體的左面看得到的視圖.8、D【解析】分析:根據相似三角形的性質進行解答即可.詳解:∵在平行四邊形ABCD中,∴AE∥CD,∴△EAF∽△CDF,∵∴∴∵AF∥BC,∴△EAF∽△EBC,∴故選D.點睛:考查相似三角形的性質:相似三角形的面積比等于相似比的平方.9、C【解析】二元一次方程組的解和解二元一次方程組,求代數(shù)式的值,算術平方根.【分析】∵是二元一次方程組的解,∴,解得.∴.即的算術平方根為1.故選C.10、D【解析】
根據合并同類項、單項式的乘法、積的乘方和單項式的乘法逐項計算,結合排除法即可得出答案.【詳解】A.﹣3a+a=﹣2a,故不正確;B.3x2?2x=6x3,故不正確;C.4a2﹣5a2=-a2,故不正確;D.(2x3)2÷2x2=4x6÷2x2=2x4,故正確;故選D.【點睛】本題考查了合并同類項、單項式的乘法、積的乘方和單項式的乘法,熟練掌握它們的運算法則是解答本題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】
根據已知DE∥BC得出=進而得出BC的值【詳解】∵DE∥BC,AD=6,BD=2,DE=3,∴△ADE∽△ABC,∴,∴,∴BC=1,故答案為1.【點睛】此題考查了平行線分線段成比例的性質,解題的關鍵在于利用三角形的相似求三角形的邊長.12、40°【解析】
直接利用三角形內角和定理得出∠6+∠7的度數(shù),進而得出答案.【詳解】如圖所示:∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,
∵∠1+∠2+∠3+∠4=220°,
∴∠1+∠2+∠6+∠3+∠4+∠7=360°,
∴∠6+∠7=140°,
∴∠5=180°-(∠6+∠7)=40°.
故答案為40°.【點睛】主要考查了三角形內角和定理,正確應用三角形內角和定理是解題關鍵.13、【解析】
過點B作BF⊥OC于點F,易證S△OAE=S四邊形DEBF=,S△OAB=S四邊形DABF,因為,所以,,又因為AD∥BF,所以S△BCF∽S△ACD,可得BF:AD=2:5,因為S△OAD=S△OBF,所以×OD×AD=×OF×BF,即BF:AD=2:5=OD:OF,易證:S△OED∽S△OBF,S△OED:S△OBF=4:25,S△OED:S四邊形EDFB=4:21,所以S△OED=,S△OBF=S△OED+S四邊形EDFB=+=,即可得解:k=2S△OBF=.【詳解】解:過點B作BF⊥OC于點F,由反比例函數(shù)的比例系數(shù)|k|的意義可知:S△OAD=S△OBF,∴S△OAD-S△OED=S△OBF一S△OED,即S△OAE=S四邊形DEBF=,S△OAB=S四邊形DABF,∵,∴,,∵AD∥BF∴S△BCF∽S△ACD,又∵,∴BF:AD=2:5,∵S△OAD=S△OBF,∴×OD×AD=×OF×BF∴BF:AD=2:5=OD:OF易證:S△OED∽S△OBF,∴S△OED:S△OBF=4:25,S△OED:S四邊形EDFB=4:21∵S四邊形EDFB=,∴S△OED=,S△OBF=S△OED+S四邊形EDFB=+=,∴k=2S△OBF=.故答案為.【點睛】本題考查反比例函數(shù)的比例系數(shù)|k|的幾何意義,解題關鍵是熟練運用相似三角形的判定定理和性質定理.14、288°【解析】
母線長為15cm,高為9cm,由勾股定理可得圓錐的底面半徑;由底面周長與扇形的弧長相等求得圓心角.【詳解】解:如圖所示,在Rt△SOA中,SO=9,SA=15;則:設側面屬開圖扇形的國心角度數(shù)為n,則由得n=288°故答案為:288°.【點睛】本題利用了勾股定理,弧長公式,圓的周長公式和扇形面積公式求解.15、【解析】試題分析:這四個數(shù)中,奇數(shù)為1和3,則P(抽出的數(shù)字是奇數(shù))=2÷4=.考點:概率的計算.16、1【解析】
由于四邊形ABCD是平行四邊形,所以得到BC∥AD、BC=AD,而CE=2EB,由此即可得到△AFD∽△CFE,它們的相似比為3:2,最后利用相似三角形的性質即可求解.【詳解】解:∵四邊形ABCD是平行四邊形,∴BC∥AD、BC=AD,而CE=2EB,∴△AFD∽△CFE,且它們的相似比為3:2,∴S△AFD:S△EFC=()2,而S△AFD=9,∴S△EFC=1.故答案為1.【點睛】此題主要考查了相似三角形的判定與性質,解題首先利用平行四邊形的構造相似三角形的相似條件,然后利用其性質即可求解.三、解答題(共8題,共72分)17、15天【解析】試題分析:首先設規(guī)定的工期是x天,則甲工程隊單獨做需(x-1)天,乙工程隊單獨做需(x+6)天,根據題意可得等量關系:乙工程隊干x天的工作量+甲工程隊干4天的工作量=1,根據等量關系列出方程,解方程即可.試題解析:設工程期限為x天.根據題意得,解得:x=15.經檢驗x=15是原分式方程的解.答:工程期限為15天.18、(1)見解析;(2)AC∥BD,理由見解析;(3)【解析】
(1)直接利用相似三角形的判定方法得出△BCE∽△DCP,進而得出答案;
(2)首先得出△PCE∽△DCB,進而求出∠ACB=∠CBD,即可得出AC與BD的位置關系;
(3)首先利用相似三角形的性質表示出BD,PM的長,進而根據三角形的面積公式得到△PBD的面積.【詳解】(1)證明:∵△BCE和△CDP均為等腰直角三角形,∴∠ECB=∠PCD=45°,∠CEB=∠CPD=90°,∴△BCE∽△DCP,∴;(2)解:結論:AC∥BD,理由:∵∠PCE+∠ECD=∠BCD+∠ECD=45°,∴∠PCE=∠BCD,又∵,∴△PCE∽△DCB,∴∠CBD=∠CEP=90°,∵∠ACB=90°,∴∠ACB=∠CBD,∴AC∥BD;(3)解:如圖所示:作PM⊥BD于M,∵AC=4,△ABC和△BEC均為等腰直角三角形,∴BE=CE=4,∵△PCE∽△DCB,∴,即,∴BD=,∵∠PBM=∠CBD﹣∠CBP=45°,BP=BE+PE=4+1=5,∴PM=5sin45°=∴△PBD的面積S=BD?PM=××=.【點睛】本題考查相似三角形的性質和判定,解題的關鍵是掌握相似三角形的性質和判定.19、(1)作圖見解析;(2)⊙O的半徑為52【解析】
(1)作出相應的圖形,如圖所示;(2)由平行四邊形的對邊平行得到AD與BC平行,可得同旁內角互補,再由AE與BE為角平分線,可得出AE與BE垂直,利用直徑所對的圓周角為直角,得到AF與FB垂直,可得出兩銳角互余,根據角平分線性質及等量代換得到∠AGF=∠AEB,根據sin∠AGF的值,確定出sin∠AEB的值,求出AB的長,即可確定出圓的半徑.【詳解】解:(1)作出相應的圖形,如圖所示(去掉線段BF即為所求).(2)∵AD∥BC,∴∠DAB+∠CBA=180°.∵AE與BE分別為∠DAB與∠CBA的平分線,∴∠EAB+∠EBA=90°,∴∠AEB=90°.∵AB為⊙O的直徑,點F在⊙O上,∴∠AFB=90°,∴∠FAG+∠FGA=90°.∵AE平分∠DAB,∴∠FAG=∠EAB,∴∠AGF=∠ABE,∴sin∠ABE=sin∠AGF=45=AE∵AE=4,∴AB=5,∴⊙O的半徑為52【點睛】此題屬于圓綜合題,涉及的知識有:圓周角定理,平行四邊形的判定與性質,角平分線性質,以及銳角三角函數(shù)定義,熟練掌握各自的性質及定理是解本題的關鍵.20、閱讀發(fā)現(xiàn):90°;(1)證明見解析;(2)100°【解析】
閱讀發(fā)現(xiàn):只要證明,即可證明.拓展應用:欲證明,只要證明≌即可.根據即可計算.【詳解】解:如圖中,四邊形ABCD是正方形,,,≌,,,,,,,故答案為為等邊三角形,,.為等邊三角形,,.四邊形ABCD為矩形,,..,,.在和中,,≌.;≌,,.【點睛】本題考查全等三角形的判定和性質、正方形的性質、矩形的性質等知識,解題的關鍵是正確尋找全等三角形,利用全等三角形的尋找解決問題,屬于中考常考題型.21、215.6米.【解析】
過A點做EF的垂線,交EF于M點,過B點做EF的垂線,交EF于N點,根據Rt△ACM和三角函數(shù)求出CM、DN,然后根據即可求出A、B兩點間的距離.【詳解】解:過A點做EF的垂線,交EF于M點,過B點做EF的垂線,交EF于N點在Rt△ACM中,∵,∴AM=CM=200米,又∵CD=300米,所以米,在Rt△BDN中,∠BDF=60°,BN=200米∴米,∴米即A,B兩點之間的距離約為215.6米.【點睛】本題主要考查三角函數(shù),正確做輔助線是解題的關鍵.22、(1)y=x2+2x﹣3;(2);(3)詳見解析.【解析】試題分析:(1)先利用拋物線的對稱性確定出點B的坐標,然后設拋物線的解析式為y=a(x+3)(x-1),將點D的坐標代入求得a的值即可;(2)過點E作EF∥y軸,交AD與點F,過點C作CH⊥EF,垂足為H.設點E(m,m2+2m-3),則F(m,-m+1),則EF=-m2-3m+4,然后依據△ACE的面積=△EFA的面積-△EFC的面積列出三角形的面積與m的函數(shù)關系式,然后利用二次函數(shù)的性質求得△ACE的最大值即可;(3)當AD為平行四邊形的對角線時.設點M的坐標為(-1,a),點N的坐標為(x,y),利用平行四邊形對角線互相平分的性質可求得x的值,然后將x=-2代入求得對應的y值,然后依據=,可求得a的值;當AD為平行四邊形的邊時.設點M的坐標為(-1,a).則點N的坐標為(-6,a+5)或(4,a-5),將點N的坐標代入拋物線的解析式可求得a的值.試題解析:(1)∴A(1,0),拋物線的對稱軸為直線x=-1,∴B(-3,0),設拋物線的表達式為y=a(x+3)(x-1),將點D(-4,5)代入,得5a=5,解得a=1,∴拋物線的表達式為y=x2+2x-3;(2)過點E作EF∥y軸,交AD與點F,交x軸于點G,過點C作CH⊥EF,垂足為H.設點E(m,m2+2m-3),則F(m,-m+1).∴EF=-m+1-m2-2m+3=-m2-3m+4.∴S△ACE=S△EFA-S△EFC=EF·AG-EF·HC=EF·OA=-(m+)2+.∴△ACE的面積的最大值為;(3)當AD為平行四邊形的對角線時:設點M的坐標為(-1,a),點N的坐標為(x,y).∴平行四邊形的對角線互相平分,∴=,=,解得x=-2,y=5-a,將點N的坐標代入拋物線的表達式,得5-a=-3,解得a=8,∴點M的坐標為(-1,8),當AD為平行四邊形的邊時:設點M的坐標為(-1,a),則點N的坐標為(-6,a+5)或(4,a-5),∴將x=-6,y=a+5代入拋物線的表達式,得a+5=36-12-3,解得a=16,∴M(-1,16),將x=4,y=a-5代入拋物線的表達式,得a-5=16+8-3,解得a=26,∴M(-1,26),綜上所述,當點M的坐標為(-1,26)或(-1,16)或(-1,8)時,以點A,D,M,N為頂點的四邊形能成為平行四邊形.23、(1)△CPD.理由參見解析;(2)證明參見解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 農村80歲老人低保申請書范文(8篇)
- 漁業(yè)政策與法規(guī)研究-洞察分析
- 外關穴治療偏癱的臨床研究-洞察分析
- 牙形石生物地理學-洞察分析
- 水資源節(jié)約型地產開發(fā)-洞察分析
- 新興技術教育投資-洞察分析
- 藥物干預反社會人格障礙機制-洞察分析
- 網絡環(huán)境下的網絡安全刑法-洞察分析
- 新能源車與城市可持續(xù)發(fā)展-洞察分析
- 虛擬現(xiàn)實會議與遠程辦公-洞察分析
- 人教版(2019)高中生物選擇性必修2《生物與環(huán)境》全冊考點復習提綱
- 與信仰對話 課件-2024年入團積極分子培訓
- 中學美術《剪紙藝術》完整課件
- 涉水作業(yè)安全指導手冊
- 北京市道德與法治初二上學期期末試題與參考答案(2024年)
- 實驗室安全學習通超星期末考試答案章節(jié)答案2024年
- 酒店業(yè)主代表須有五星級酒店管理背景工作職責與職位要求
- 2024年廣告設計師(高級)理論考試題及答案
- 國有企業(yè)關聯(lián)交易管理辦法及實施細則
- 【論電子商務對現(xiàn)代生活的影響(論文)3300字】
- 專題02整式加減的應用(應用題專項訓練)(滬科版)(原卷版+解析)
評論
0/150
提交評論