![2025年安徽省舒城龍河中學高三第三次模擬數(shù)學試題試卷含解析_第1頁](http://file4.renrendoc.com/view12/M02/1A/37/wKhkGWbZnTmAAftlAAH3K9Spx7c772.jpg)
![2025年安徽省舒城龍河中學高三第三次模擬數(shù)學試題試卷含解析_第2頁](http://file4.renrendoc.com/view12/M02/1A/37/wKhkGWbZnTmAAftlAAH3K9Spx7c7722.jpg)
![2025年安徽省舒城龍河中學高三第三次模擬數(shù)學試題試卷含解析_第3頁](http://file4.renrendoc.com/view12/M02/1A/37/wKhkGWbZnTmAAftlAAH3K9Spx7c7723.jpg)
![2025年安徽省舒城龍河中學高三第三次模擬數(shù)學試題試卷含解析_第4頁](http://file4.renrendoc.com/view12/M02/1A/37/wKhkGWbZnTmAAftlAAH3K9Spx7c7724.jpg)
![2025年安徽省舒城龍河中學高三第三次模擬數(shù)學試題試卷含解析_第5頁](http://file4.renrendoc.com/view12/M02/1A/37/wKhkGWbZnTmAAftlAAH3K9Spx7c7725.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025年安徽省舒城龍河中學高三第三次模擬數(shù)學試題試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓:的左、右焦點分別為,,過的直線與軸交于點,線段與交于點.若,則的方程為()A. B. C. D.2.已知函數(shù),集合,,則()A. B.C. D.3.已知點,點在曲線上運動,點為拋物線的焦點,則的最小值為()A. B. C. D.44.已知數(shù)列的前n項和為,,且對于任意,滿足,則()A. B. C. D.5.已知集合的所有三個元素的子集記為.記為集合中的最大元素,則()A. B. C. D.6.設(shè)i是虛數(shù)單位,若復數(shù)是純虛數(shù),則a的值為()A. B.3 C.1 D.7.設(shè)、,數(shù)列滿足,,,則()A.對于任意,都存在實數(shù),使得恒成立B.對于任意,都存在實數(shù),使得恒成立C.對于任意,都存在實數(shù),使得恒成立D.對于任意,都存在實數(shù),使得恒成立8.《九章算術(shù)》有如下問題:“今有金箠,長五尺,斬本一尺,重四斤;斬末一尺,重二斤,問次一尺各重幾何?”意思是:“現(xiàn)在有一根金箠,長五尺在粗的一端截下一尺,重斤;在細的一端截下一尺,重斤,問各尺依次重多少?”按這一問題的顆設(shè),假設(shè)金箠由粗到細各尺重量依次成等差數(shù)列,則從粗端開始的第二尺的重量是()A.斤 B.斤 C.斤 D.斤9.復數(shù)(i是虛數(shù)單位)在復平面內(nèi)對應的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.已知復數(shù),則的虛部為()A.-1 B. C.1 D.11.音樂,是用聲音來展現(xiàn)美,給人以聽覺上的享受,熔鑄人們的美學趣味.著名數(shù)學家傅立葉研究了樂聲的本質(zhì),他證明了所有的樂聲都能用數(shù)學表達式來描述,它們是一些形如的簡單正弦函數(shù)的和,其中頻率最低的一項是基本音,其余的為泛音.由樂聲的數(shù)學表達式可知,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波.下列函數(shù)中不能與函數(shù)構(gòu)成樂音的是()A. B. C. D.12.在平面直角坐標系中,已知角的頂點與原點重合,始邊與軸的非負半軸重合,終邊落在直線上,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的前項和且,設(shè),則的值等于_______________.14.能說明“若對于任意的都成立,則在上是減函數(shù)”為假命題的一個函數(shù)是________.15.某校為了解學生學習的情況,采用分層抽樣的方法從高一人、高二人、高三人中,抽取人進行問卷調(diào)查.已知高一被抽取的人數(shù)為,那么高三被抽取的人數(shù)為_______.16.秦九韶算法是南宋時期數(shù)學家秦九韶提出的一種多項式簡化算法,如圖所示的框圖給出了利用秦九韶算法求多項式值的一個實例,若輸入,的值分別為4,5,則輸出的值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在△ABC中,角A,B,C的對邊分別為a,b,c,且b(a2+c2﹣b2)=a2ccosC+ac2cosA.(1)求角B的大?。唬?)若△ABC外接圓的半徑為,求△ABC面積的最大值.18.(12分)已知函數(shù)(1)當時,求不等式的解集;(2)的圖象與兩坐標軸的交點分別為,若三角形的面積大于,求參數(shù)的取值范圍.19.(12分)已知橢圓的左、右焦點分別為,離心率為,為橢圓上一動點(異于左右頂點),面積的最大值為.(1)求橢圓的方程;(2)若直線與橢圓相交于點兩點,問軸上是否存在點,使得是以為直角頂點的等腰直角三角形?若存在,求點的坐標;若不存在,請說明理由.20.(12分)如圖,四棱錐中,底面為直角梯形,∥,為等邊三角形,平面底面,為的中點.(1)求證:平面平面;(2)點在線段上,且,求平面與平面所成的銳二面角的余弦值.21.(12分)已知函數(shù).(1)當時,求不等式的解集;(2)若關(guān)于的不等式的解集包含,求實數(shù)的取值范圍.22.(10分)已知函數(shù).(1)若,證明:當時,;(2)若在只有一個零點,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
由題可得,所以,又,所以,得,故可得橢圓的方程.【詳解】由題可得,所以,又,所以,得,,所以橢圓的方程為.故選:D本題主要考查了橢圓的定義,橢圓標準方程的求解.2.C【解析】
分別求解不等式得到集合,再利用集合的交集定義求解即可.【詳解】,,∴.故選C.本題主要考查了集合的基本運算,難度容易.3.D【解析】
如圖所示:過點作垂直準線于,交軸于,則,設(shè),,則,利用均值不等式得到答案.【詳解】如圖所示:過點作垂直準線于,交軸于,則,設(shè),,則,當,即時等號成立.故選:.本題考查了拋物線中距離的最值問題,意在考查學生的計算能力和轉(zhuǎn)化能力.4.D【解析】
利用數(shù)列的遞推關(guān)系式判斷求解數(shù)列的通項公式,然后求解數(shù)列的和,判斷選項的正誤即可.【詳解】當時,.所以數(shù)列從第2項起為等差數(shù)列,,所以,,.,,.故選:.本題考查數(shù)列的遞推關(guān)系式的應用、數(shù)列求和以及數(shù)列的通項公式的求法,考查轉(zhuǎn)化思想以及計算能力,是中檔題.5.B【解析】
分類討論,分別求出最大元素為3,4,5,6的三個元素子集的個數(shù),即可得解.【詳解】集合含有個元素的子集共有,所以.在集合中:最大元素為的集合有個;最大元素為的集合有;最大元素為的集合有;最大元素為的集合有;所以.故選:.此題考查集合相關(guān)的新定義問題,其本質(zhì)在于弄清計數(shù)原理,分類討論,分別求解.6.D【解析】
整理復數(shù)為的形式,由復數(shù)為純虛數(shù)可知實部為0,虛部不為0,即可求解.【詳解】由題,,因為純虛數(shù),所以,則,故選:D本題考查已知復數(shù)的類型求參數(shù)范圍,考查復數(shù)的除法運算.7.D【解析】
取,可排除AB;由蛛網(wǎng)圖可得數(shù)列的單調(diào)情況,進而得到要使,只需,由此可得到答案.【詳解】取,,數(shù)列恒單調(diào)遞增,且不存在最大值,故排除AB選項;由蛛網(wǎng)圖可知,存在兩個不動點,且,,因為當時,數(shù)列單調(diào)遞增,則;當時,數(shù)列單調(diào)遞減,則;所以要使,只需要,故,化簡得且.故選:D.本題考查遞推數(shù)列的綜合運用,考查邏輯推理能力,屬于難題.8.B【解析】
依題意,金箠由粗到細各尺重量構(gòu)成一個等差數(shù)列,則,由此利用等差數(shù)列性質(zhì)求出結(jié)果.【詳解】設(shè)金箠由粗到細各尺重量依次所成得等差數(shù)列為,設(shè)首項,則,公差,.故選B本題考查了等差數(shù)列的通項公式,考查了推理能力與計算能力,屬于基礎(chǔ)題.9.B【解析】
利用復數(shù)的四則運算以及幾何意義即可求解.【詳解】解:,則復數(shù)(i是虛數(shù)單位)在復平面內(nèi)對應的點的坐標為:,位于第二象限.故選:B.本題考查了復數(shù)的四則運算以及復數(shù)的幾何意義,屬于基礎(chǔ)題.10.A【解析】
分子分母同乘分母的共軛復數(shù)即可.【詳解】,故的虛部為.故選:A.本題考查復數(shù)的除法運算,考查學生運算能力,是一道容易題.11.C【解析】
由基本音的諧波的定義可得,利用可得,即可判斷選項.【詳解】由題,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波,由,可知若,則必有,故選:C本題考查三角函數(shù)的周期與頻率,考查理解分析能力.12.C【解析】
利用誘導公式以及二倍角公式,將化簡為關(guān)于的形式,結(jié)合終邊所在的直線可知的值,從而可求的值.【詳解】因為,且,所以.故選:C.本題考查三角函數(shù)中的誘導公式以及三角恒等變換中的二倍角公式,屬于給角求值類型的問題,難度一般.求解值的兩種方法:(1)分別求解出的值,再求出結(jié)果;(2)將變形為,利用的值求出結(jié)果.二、填空題:本題共4小題,每小題5分,共20分。13.7【解析】
根據(jù)題意,當時,,可得,進而得數(shù)列為等比數(shù)列,再計算可得,進而可得結(jié)論.【詳解】由題意,當時,,又,解得,當時,由,所以,,即,故數(shù)列是以為首項,為公比的等比數(shù)列,故,又,,所以,.故答案為:.本題考查了數(shù)列遞推關(guān)系、函數(shù)求值,考查了推理能力與計算能力,計算得是解決本題的關(guān)鍵,屬于中檔題.14.答案不唯一,如【解析】
根據(jù)對基本函數(shù)的理解可得到滿足條件的函數(shù).【詳解】由題意,不妨設(shè),則在都成立,但是在是單調(diào)遞增的,在是單調(diào)遞減的,說明原命題是假命題.所以本題答案為,答案不唯一,符合條件即可.本題考查對基本初等函數(shù)的圖像和性質(zhì)的理解,關(guān)鍵是假設(shè)出一個在上不是單調(diào)遞減的函數(shù),再檢驗是否滿足命題中的條件,屬基礎(chǔ)題.15.【解析】由分層抽樣的知識可得,即,所以高三被抽取的人數(shù)為,應填答案.16.1055【解析】
模擬執(zhí)行程序框圖中的程序,即可求得結(jié)果.【詳解】模擬執(zhí)行程序如下:,滿足,,滿足,,滿足,,滿足,,不滿足,輸出.故答案為:1055.本題考查程序框圖的模擬執(zhí)行,屬基礎(chǔ)題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)B(2)【解析】
(1)由已知結(jié)合余弦定理,正弦定理及和兩角和的正弦公式進行化簡可求cosB,進而可求B;(2)由已知結(jié)合正弦定理,余弦定理及基本不等式即可求解ac的范圍,然后結(jié)合三角形的面積公式即可求解.【詳解】(1)因為b(a2+c2﹣b2)=ca2cosC+ac2cosA,∴,即2bcosB=acosC+ccosA由正弦定理可得,2sinBcosB=sinAcosC+sinCcosA=sin(A+C)=sinB,因為,所以,所以B;(2)由正弦定理可得,b=2RsinB2,由余弦定理可得,b2=a2+c2﹣2accosB,即a2+c2﹣ac=4,因為a2+c2≥2ac,所以4=a2+c2﹣ac≥ac,當且僅當a=c時取等號,即ac的最大值4,所以△ABC面積S即面積的最大值.本題綜合考查了正弦定理,余弦定理及三角形的面積公式在求解三角形中的應用,屬于中檔題.18.(1)(2)【解析】
(1)當時,不等式可化為:,再利用絕對值的意義,分,,討論求解.(2)根據(jù)可得,得到函數(shù)的圖象與兩坐標軸的交點坐標分別為,再利用三角形面積公式由求解.【詳解】(1)當時,不等式可化為:①當時,不等式化為,解得:②當時,不等式化為,解得:,③當時,不等式化為解集為,綜上,不等式的解集為.(2)由題得,所以函數(shù)的圖象與兩坐標軸的交點坐標分別為,的面積為,由,得(舍),或,所以,參數(shù)的取值范圍是.本題主要考查絕對值不等式的解法和絕對值函數(shù)的應用,還考查分類討論的思想和運算求解的能力,屬于中檔題.19.(1);(2)見解析【解析】
(1)由面積最大值可得,又,以及,解得,即可得到橢圓的方程,(2)假設(shè)軸上存在點,是以為直角頂點的等腰直角三角形,設(shè),,線段的中點為,根據(jù)韋達定理求出點的坐標,再根據(jù),,即可求出的值,可得點的坐標.【詳解】(1)面積的最大值為,則:又,,解得:,橢圓的方程為:(2)假設(shè)軸上存在點,是以為直角頂點的等腰直角三角形設(shè),,線段的中點為由,消去可得:,解得:∴,,依題意有,由可得:,可得:由可得:,代入上式化簡可得:則:,解得:當時,點滿足題意;當時,點滿足題意故軸上存在點,使得是以為直角頂點的等腰直角三角形本題考查了橢圓的方程,直線和橢圓的位置關(guān)系,斜率公式,考查了運算能力和轉(zhuǎn)化能力,屬于中檔題.20.(1)見解析(2)【解析】
(1)根據(jù)等邊三角形的性質(zhì)證得,根據(jù)面面垂直的性質(zhì)定理,證得底面,由此證得,結(jié)合證得平面,由此證得:平面平面.(2)建立空間直角坐標系,利用平面和平面的法向量,計算出平面與平面所成的銳二面角的余弦值.【詳解】(1)證明:∵為等邊三角形,為的中點,∴∵平面底面,平面底面,∴底面平面,∴又由題意可知為正方形,又,∴平面平面,∴平面平面(2)如圖建立空間直角坐標系,則,,,由已知,得,設(shè)平面的法向量為,則令,則,∴由(1)知平面的法向量可取為∴∴平面與平面所成的銳二面角的余弦值為.本小題主要考查面面垂直的判定定理和性質(zhì)定理,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.21.(1)(2)【解析】
(1)按進行分類,得到等價不等式組,分別解出解集,再取并集,得到答案;(2)將問題轉(zhuǎn)化為在時恒成立,按和分類討論,分別得到不等式恒成立時對應的的范圍,再取交集,得到答案.【詳解】解:(1)當時,等價于或或,解得或或,所以不等式的解集為:.(2)依題意即在時恒成立,當時,,即,所以對恒成立∴,得;當時,,即,所以對任意恒成立,∴,得∴,綜上,.本題考查分類討論解絕對值不等式,分類討論研究不等式恒成立問題,屬于中檔題.22.(1)見解析;(2)【解析】
分析:(1)先構(gòu)造函數(shù),再求導函數(shù),根據(jù)導函數(shù)不大于零得函數(shù)單調(diào)遞減,最后根據(jù)單調(diào)性證得不等式;(2)研究零點,等價研究的零點,先求導數(shù):,這里產(chǎn)生兩個討論點,一個是a與零,一個是x與2,當時,,沒有零點;當時,先減后增,從而確定只有一個零點的必要條件,再利用零點存在定理確定條件的充分性,即得a的值.詳解:(1)當時,等價于.設(shè)函數(shù),
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中藥加工項目合同范例
- 代發(fā)合同范例
- 農(nóng)村村委房屋買賣合同范本
- 加盟簽署合同范例
- 公墓垃圾清理合同范例
- 供材料合同范例
- 個人出租農(nóng)村房屋合同范例
- 乙方解除兼職合同范例
- 冰柜購買合同范例
- 乙方材料保管合同范本
- 《AP內(nèi)容介紹》課件
- 醫(yī)生定期考核簡易程序述職報告范文(10篇)
- 市政工程人員績效考核制度
- 公園景區(qū)安全生產(chǎn)
- 安全創(chuàng)新創(chuàng)效
- 《中國糖尿病防治指南(2024版)》更新要點解讀
- 初級創(chuàng)傷救治課件
- 《處理人際關(guān)系》課件
- TSGD7002-2023-壓力管道元件型式試驗規(guī)則
- 2022版義務教育英語課程標準整體解讀課件
- 2024年實驗小學大隊委競選筆試試題題庫
評論
0/150
提交評論