廣東省華師附中新世界校2025屆下學期初三期末考試仿真卷數(shù)學試題含解析_第1頁
廣東省華師附中新世界校2025屆下學期初三期末考試仿真卷數(shù)學試題含解析_第2頁
廣東省華師附中新世界校2025屆下學期初三期末考試仿真卷數(shù)學試題含解析_第3頁
廣東省華師附中新世界校2025屆下學期初三期末考試仿真卷數(shù)學試題含解析_第4頁
廣東省華師附中新世界校2025屆下學期初三期末考試仿真卷數(shù)學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

廣東省華師附中新世界校2025屆下學期初三期末考試仿真卷數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.已知二次函數(shù)的與的不符對應值如下表:且方程的兩根分別為,,下面說法錯誤的是().A., B.C.當時, D.當時,有最小值2.如圖,在4×4正方形網(wǎng)格中,黑色部分的圖形構(gòu)成一個軸對稱圖形,現(xiàn)在任意選取一個白色的小正方形并涂黑,使黑色部分的圖形仍然構(gòu)成一個軸對稱圖形的概率是()A. B. C. D.3.在圓錐、圓柱、球、正方體這四個幾何體中,主視圖不可能是多邊形的是()A.圓錐 B.圓柱 C.球 D.正方體4.下列4個數(shù):,,π,()0,其中無理數(shù)是()A. B. C.π D.()05.《九章算術》中注有“今兩算得失相反,要令正負以名之”,意思是:今有兩數(shù)若其意義相反,則分別叫做正數(shù)與負數(shù),若氣溫為零上10℃記作+10℃,則﹣3℃表示氣溫為()A.零上3℃ B.零下3℃ C.零上7℃ D.零下7℃6.如圖,△ABC中,∠B=55°,∠C=30°,分別以點A和點C為圓心,大于AC的長為半徑畫弧,兩弧相交于點M,N作直線MN,交BC于點D,連結(jié)AD,則∠BAD的度數(shù)為()A.65° B.60°C.55° D.45°7.在如圖的計算程序中,y與x之間的函數(shù)關系所對應的圖象大致是()A. B. C. D.8.下列各式計算正確的是()A.a(chǎn)4?a3=a12 B.3a?4a=12a C.(a3)4=a12 D.a(chǎn)12÷a3=a49.超市店慶促銷,某種書包原價每個x元,第一次降價打“八折”,第二次降價每個又減10元,經(jīng)兩次降價后售價為90元,則得到方程()A.0.8x﹣10=90 B.0.08x﹣10=90 C.90﹣0.8x=10 D.x﹣0.8x﹣10=9010.下列交通標志是中心對稱圖形的為()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,點P的坐標為(2,2),點A,B分別在x軸,y軸的正半軸上運動,且∠APB=90°.下列結(jié)論:①PA=PB;②當OA=OB時四邊形OAPB是正方形;③四邊形OAPB的面積和周長都是定值;④連接OP,AB,則AB>OP.其中正確的結(jié)論是_____.(把你認為正確結(jié)論的序號都填上)12.如圖,長方形紙片ABCD中,AB=4,BC=6,將△ABC沿AC折疊,使點B落在點E處,CE交AD于點F,則△AFC的面積等于___.13.如圖,在網(wǎng)格中,小正方形的邊長均為1,點A、B、O都在格點上,則∠OAB的正弦值是_____.14.如圖,點A、B、C是⊙O上的點,且∠ACB=40°,陰影部分的面積為2π,則此扇形的半徑為______.15.如圖,在平面直角坐標系中,Rt△ABO的頂點O與原點重合,頂點B在x軸上,∠ABO=90°,OA與反比例函數(shù)y=的圖象交于點D,且OD=2AD,過點D作x軸的垂線交x軸于點C.若S四邊形ABCD=10,則k的值為.16.若代數(shù)式在實數(shù)范圍內(nèi)有意義,則x的取值范圍是_______.三、解答題(共8題,共72分)17.(8分)如圖,在平行四邊形ABCD中,BD是對角線,∠ADB=90°,E、F分別為邊AB、CD的中點.(1)求證:四邊形DEBF是菱形;(2)若BE=4,∠DEB=120°,點M為BF的中點,當點P在BD邊上運動時,則PF+PM的最小值為,并在圖上標出此時點P的位置.18.(8分)在△ABC中,AB=AC≠BC,點D和點A在直線BC的同側(cè),BD=BC,∠BAC=α,∠DBC=β,且α+β=110°,連接AD,求∠ADB的度數(shù).(不必解答)小聰先從特殊問題開始研究,當α=90°,β=30°時,利用軸對稱知識,以AB為對稱軸構(gòu)造△ABD的軸對稱圖形△ABD′,連接CD′(如圖1),然后利用α=90°,β=30°以及等邊三角形等相關知識便可解決這個問題.請結(jié)合小聰研究問題的過程和思路,在這種特殊情況下填空:△D′BC的形狀是三角形;∠ADB的度數(shù)為.在原問題中,當∠DBC<∠ABC(如圖1)時,請計算∠ADB的度數(shù);在原問題中,過點A作直線AE⊥BD,交直線BD于E,其他條件不變?nèi)鬊C=7,AD=1.請直接寫出線段BE的長為.19.(8分)一天晚上,李明利用燈光下的影子長來測量一路燈D的高度.如圖,當在點A處放置標桿時,李明測得直立的標桿高AM與影子長AE正好相等,接著李明沿AC方向繼續(xù)向前走,走到點B處放置同一個標桿,測得直立標桿高BN的影子恰好是線段AB,并測得AB=1.2m,已知標桿直立時的高為1.8m,求路燈的高CD的長.20.(8分)先化簡,再求值:(﹣1)÷,其中x=1.21.(8分)解方程:.22.(10分)在等邊三角形ABC中,點P在△ABC內(nèi),點Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.求證:△ABP≌△CAQ;請判斷△APQ是什么形狀的三角形?試說明你的結(jié)論.23.(12分)如圖①,二次函數(shù)的拋物線的頂點坐標C,與x軸的交于A(1,0)、B(﹣3,0)兩點,與y軸交于點D(0,3).(1)求這個拋物線的解析式;(2)如圖②,過點A的直線與拋物線交于點E,交y軸于點F,其中點E的橫坐標為﹣2,若直線PQ為拋物線的對稱軸,點G為直線PQ上的一動點,則x軸上是否存在一點H,使D、G、H、F四點所圍成的四邊形周長最???若存在,求出這個最小值及點G、H的坐標;若不存在,請說明理由;(3)如圖③,連接AC交y軸于M,在x軸上是否存在點P,使以P、C、M為頂點的三角形與△AOM相似?若存在,求出點P的坐標;若不存在,請說明理由.24.元旦放假期間,小明和小華準備到西安的大雁塔(記為A)、白鹿原(記為B)、興慶公園(記為C)、秦嶺國家植物園(記為D)中的一個景點去游玩,他們各自在這四個景點中任選一個,每個景點被選中的可能性相同.(1)求小明選擇去白鹿原游玩的概率;(2)用樹狀圖或列表的方法求小明和小華都選擇去秦嶺國家植物園游玩的概率.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

分別結(jié)合圖表中數(shù)據(jù)得出二次函數(shù)對稱軸以及圖像與x軸交點范圍和自變量x與y的對應情況,進而得出答案.【詳解】A、利用圖表中x=0,1時對應y的值相等,x=﹣1,2時對應y的值相等,∴x=﹣2,5時對應y的值相等,∴x=﹣2,y=5,故此選項正確;B、方程ax2+bc+c=0的兩根分別是x1、x2(x1<x2),且x=1時y=﹣1;x=2時,y=1,∴1<x2<2,故此選項正確;C、由題意可得出二次函數(shù)圖像向上,∴當x1<x<x2時,y<0,故此選項錯誤;D、∵利用圖表中x=0,1時對應y的值相等,∴當x=時,y有最小值,故此選項正確,不合題意.所以選C.此題主要考查了拋物線與x軸的交點以及利用圖像上點的坐標得出函數(shù)的性質(zhì),利用數(shù)形結(jié)合得出是解題關鍵.2、B【解析】解:∵根據(jù)軸對稱圖形的概念,軸對稱圖形兩部分沿對稱軸折疊后可重合,白色的小正方形有13個,而能構(gòu)成一個軸對稱圖形的有4個情況,∴使圖中黑色部分的圖形仍然構(gòu)成一個軸對稱圖形的概率是:.故選B.3、C【解析】【分析】根據(jù)各幾何體的主視圖可能出現(xiàn)的情況進行討論即可作出判斷.【詳解】A.圓錐的主視圖可以是三角形也可能是圓,故不符合題意;B.圓柱的主視圖可能是長方形也可能是圓,故不符合題意;C.球的主視圖只能是圓,故符合題意;D.正方體的主視圖是正方形或長方形(中間有一豎),故不符合題意,故選C.【點睛】本題考查了簡單幾何體的三視圖——主視圖,明確主視圖是從物體正面看得到的圖形是關鍵.4、C【解析】=3,是無限循環(huán)小數(shù),π是無限不循環(huán)小數(shù),,所以π是無理數(shù),故選C.5、B【解析】試題分析:由題意知,“-”代表零下,因此-3℃表示氣溫為零下3℃.故選B.考點:負數(shù)的意義6、A【解析】

根據(jù)線段垂直平分線的性質(zhì)得到AD=DC,根據(jù)等腰三角形的性質(zhì)得到∠C=∠DAC,求得∠DAC=30°,根據(jù)三角形的內(nèi)角和得到∠BAC=95°,即可得到結(jié)論.【詳解】由題意可得:MN是AC的垂直平分線,則AD=DC,故∠C=∠DAC,∵∠C=30°,∴∠DAC=30°,∵∠B=55°,∴∠BAC=95°,∴∠BAD=∠BAC-∠CAD=65°,故選A.此題主要考查了線段垂直平分線的性質(zhì),三角形的內(nèi)角和,正確掌握線段垂直平分線的性質(zhì)是解題關鍵.7、A【解析】函數(shù)→一次函數(shù)的圖像及性質(zhì)8、C【解析】

根據(jù)同底數(shù)冪的乘法,可判斷A、B,根據(jù)冪的乘方,可判斷C,根據(jù)同底數(shù)冪的除法,可判斷D.【詳解】A.a(chǎn)4?a3=a7,故A錯誤;B.3a?4a=12a2,故B錯誤;C.(a3)4=a12,故C正確;D.a(chǎn)12÷a3=a9,故D錯誤.故選C.本題考查了同底數(shù)冪的除法,同底數(shù)冪的除法底數(shù)不變指數(shù)相減是解題的關鍵.9、A【解析】試題分析:設某種書包原價每個x元,根據(jù)題意列出方程解答即可.設某種書包原價每個x元,可得:0.8x﹣10=90考點:由實際問題抽象出一元一次方程.10、C【解析】

根據(jù)中心對稱圖形的定義即可解答.【詳解】解:A、屬于軸對稱圖形,不是中心對稱的圖形,不合題意;

B、是中心對稱的圖形,但不是交通標志,不符合題意;

C、屬于軸對稱圖形,屬于中心對稱的圖形,符合題意;

D、不是中心對稱的圖形,不合題意.

故選C.本題考查中心對稱圖形的定義:繞對稱中心旋轉(zhuǎn)180度后所得的圖形與原圖形完全重合.二、填空題(本大題共6個小題,每小題3分,共18分)11、①②【解析】

過P作PM⊥y軸于M,PN⊥x軸于N,得出四邊形PMON是正方形,推出OM=OM=ON=PN=1,證△APM≌△BPN,可對①進行判斷,推出AM=BN,求出OA+OB=ON+OM=2,當當OA=OB時,OA=OB=1,然后可對②作出判斷,由△APM≌△BPN可對四邊形OAPB的面積作出判斷,由OA+OB=2,然后依據(jù)AP和PB的長度變化情況可對四邊形OAPB的周長作出判斷,求得AB的最大值以及OP的長度可對④作出判斷.【詳解】過P作PM⊥y軸于M,PN⊥x軸于N

∵P(1,1),

∴PN=PM=1.

∵x軸⊥y軸,

∴∠MON=∠PNO=∠PMO=90°,

∴∠MPN=360°-90°-90°-90°=90°,則四邊形MONP是正方形,

∴OM=ON=PN=PM=1,

∵∠MPA=∠APB=90°,

∴∠MPA=∠NPB.

∵∠MPA=∠NPB,PM=PN,∠PMA=∠PNB,

∴△MPA≌△NPB,

∴PA=PB,故①正確.

∵△MPA≌△NPB,

∴AM=BN,

∴OA+OB=OA+ON+BN=OA+ON+AM=ON+OM=1+1=2.

當OA=OB時,OA=OB=1,則點A、B分別與點M、N重合,此時四邊形OAPB是正方形,故②正確.

∵△MPA≌△NPB,

∴四邊形OAPB的面積=四邊形AONP的面積+△PNB的面積=四邊形AONP的面積+△PMA的面積=正方形PMON的面積=2.

∵OA+OB=2,PA=PB,且PA和PB的長度會不斷的變化,故周長不是定值,故③錯誤.

,∵∠AOB+∠APB=180°,

∴點A、O、B、P共圓,且AB為直徑,所以

AB≥OP,故④錯誤.

故答案為:①②.本題考查了全等三角形的性質(zhì)和判定,三角形的內(nèi)角和定理,坐標與圖形性質(zhì),正方形的性質(zhì)的應用,關鍵是推出AM=BN和推出OA+OB=OM+ON12、【解析】

由矩形的性質(zhì)可得AB=CD=4,BC=AD=6,AD//BC,由平行線的性質(zhì)和折疊的性質(zhì)可得∠DAC=∠ACE,可得AF=CF,由勾股定理可求AF的長,即可求△AFC的面積.【詳解】解:四邊形ABCD是矩形,,,折疊,在中,,,.故答案為:.本題考查了翻折變換,矩形的性質(zhì),勾股定理,利用勾股定理求AF的長是本題的關鍵.13、【解析】

如圖,過點O作OC⊥AB的延長線于點C,則AC=4,OC=2,在Rt△ACO中,AO=,∴sin∠OAB=.故答案為.14、3【解析】

根據(jù)圓周角定理可求出∠AOB的度數(shù),設扇形半徑為x,從而列出關于x的方程,求出答案.【詳解】由題意可知:∠AOB=2∠ACB=2×40°=80°,設扇形半徑為x,故陰影部分的面積為πx2×=×πx2=2π,故解得:x1=3,x2=-3(不合題意,舍去),故答案為3.本題主要考查了圓周角定理以及扇形的面積求解,解本題的要點在于根據(jù)題意列出關于x的方程,從而得到答案.15、﹣1【解析】

∵OD=2AD,∴,∵∠ABO=90°,DC⊥OB,∴AB∥DC,∴△DCO∽△ABO,∴,∴,∵S四邊形ABCD=10,∴S△ODC=8,∴OC×CD=8,OC×CD=1,∴k=﹣1,故答案為﹣1.16、【解析】先根據(jù)二次根式有意義的條件列出關于x的不等式,求出x的取值范圍即可.解:∵在實數(shù)范圍內(nèi)有意義,∴x-1≥2,解得x≥1.故答案為x≥1.本題考查的是二次根式有意義的條件,即被開方數(shù)大于等于2.三、解答題(共8題,共72分)17、(1)詳見解析;(2).【解析】

(1)根據(jù)直角三角形斜邊上的中線等于斜邊的一半,以及平行四邊形的對邊相等證明四邊形DEBF的四邊相等即可證得;(2)連接EM,EM與BD的交點就是P,F(xiàn)F+PM的最小值就是EM的長,證明△BEF是等邊三角形,利用三角函數(shù)求解.【詳解】(1)∵平行四邊形ABCD中,AD∥BC,∴∠DBC=∠ADB=90°.∵△ABD中,∠ADB=90°,E時AB的中點,∴DE=AB=AE=BE.同理,BF=DF.∵平行四邊形ABCD中,AB=CD,∴DE=BE=BF=DF,∴四邊形DEBF是菱形;(2)連接BF.∵菱形DEBF中,∠DEB=120°,∴∠EFB=60°,∴△BEF是等邊三角形.∵M是BF的中點,∴EM⊥BF.則EM=BE?sin60°=4×=2.即PF+PM的最小值是2.故答案為:2.本題考查了菱形的判定與性質(zhì)以及圖形的對稱,根據(jù)菱形的對稱性,理解PF+PM的最小值就是EM的長是關鍵.18、(1)①△D′BC是等邊三角形,②∠ADB=30°(1)∠ADB=30°;(3)7+或7﹣【解析】

(1)①如圖1中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′,由△ABD≌△ABD′,推出△D′BC是等邊三角形;②借助①的結(jié)論,再判斷出△AD′B≌△AD′C,得∠AD′B=∠AD′C,由此即可解決問題.(1)當60°<α≤110°時,如圖3中,作∠AB

D′=∠ABD,B

D′=BD,連接CD′,AD′,證明方法類似(1).(3)第①種情況:當60°<α≤110°時,如圖3中,作∠AB

D′=∠ABD,B

D′=BD,連接CD′,AD′,證明方法類似(1),最后利用含30度角的直角三角形求出DE,即可得出結(jié)論;第②種情況:當0°<α<60°時,如圖4中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′.證明方法類似(1),最后利用含30度角的直角三角形的性質(zhì)即可得出結(jié)論.【詳解】(1)①如圖1中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′,∵AB=AC,∠BAC=90°,∴∠ABC=45°,∵∠DBC=30°,∴∠ABD=∠ABC﹣∠DBC=15°,在△ABD和△ABD′中,∴△ABD≌△ABD′,∴∠ABD=∠ABD′=15°,∠ADB=∠AD′B,∴∠D′BC=∠ABD′+∠ABC=60°,∵BD=BD′,BD=BC,∴BD′=BC,∴△D′BC是等邊三角形,②∵△D′BC是等邊三角形,∴D′B=D′C,∠BD′C=60°,在△AD′B和△AD′C中,∴△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=∠BD′C=30°,∴∠ADB=30°.(1)∵∠DBC<∠ABC,∴60°<α≤110°,如圖3中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′,∵AB=AC,∴∠ABC=∠ACB,∵∠BAC=α,∴∠ABC=(180°﹣α)=90°﹣α,∴∠ABD=∠ABC﹣∠DBC=90°﹣α﹣β,同(1)①可證△ABD≌△ABD′,∴∠ABD=∠ABD′=90°﹣α﹣β,BD=BD′,∠ADB=∠AD′B∴∠D′BC=∠ABD′+∠ABC=90°﹣α﹣β+90°﹣α=180°﹣(α+β),∵α+β=110°,∴∠D′BC=60°,由(1)②可知,△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=∠BD′C=30°,∴∠ADB=30°.(3)第①情況:當60°<α<110°時,如圖3﹣1,由(1)知,∠ADB=30°,作AE⊥BD,在Rt△ADE中,∠ADB=30°,AD=1,∴DE=,∵△BCD'是等邊三角形,∴BD'=BC=7,∴BD=BD'=7,∴BE=BD﹣DE=7﹣;第②情況:當0°<α<60°時,如圖4中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′.同理可得:∠ABC=(180°﹣α)=90°﹣α,∴∠ABD=∠DBC﹣∠ABC=β﹣(90°﹣α),同(1)①可證△ABD≌△ABD′,∴∠ABD=∠ABD′=β﹣(90°﹣α),BD=BD′,∠ADB=∠AD′B,∴∠D′BC=∠ABC﹣∠ABD′=90°﹣α﹣[β﹣(90°﹣α)]=180°﹣(α+β),∴D′B=D′C,∠BD′C=60°.同(1)②可證△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∵∠AD′B+∠AD′C+∠BD′C=360°,∴∠ADB=∠AD′B=150°,在Rt△ADE中,∠ADE=30°,AD=1,∴DE=,∴BE=BD+DE=7+,故答案為:7+或7﹣.此題是三角形綜合題,主要考查全等三角形的判定和性質(zhì).等邊三角形的性質(zhì)、等腰三角形的性質(zhì)等知識,解題的關鍵是學會添加常用輔助線,構(gòu)造全等三角形解決問題,屬于中考常考題型.19、路燈高CD為5.1米.【解析】

根據(jù)AM⊥EC,CD⊥EC,BN⊥EC,EA=MA得到MA∥CD∥BN,從而得到△ABN∽△ACD,利用相似三角形對應邊的比相等列出比例式求解即可.【詳解】設CD長為x米,∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA,∴MA∥CD∥BN,∴EC=CD=x米,∴△ABN∽△ACD,∴=,即,解得:x=5.1.經(jīng)檢驗,x=5.1是原方程的解,∴路燈高CD為5.1米.本題考查了相似三角形的應用,解題的關鍵是根據(jù)已知條件得到平行線,從而證得相似三角形.20、-1.【解析】

先化簡題目中的式子,再將x的值代入化簡后的式子即可解答本題.【詳解】解:原式=,=,=,=﹣,當x=1時,原式=﹣=﹣1.本題主要考查分式的化簡求值,解題的關鍵是掌握分式的混合運算順序和運算法則21、【解析】分析:此題應先將原分式方程兩邊同時乘以最簡公分母,則原分式方程可化為整式方程,解出即可.詳解:去分母,得.去括號,得.移項,得.合并同類項,得.系數(shù)化為1,得.經(jīng)檢驗,原方程的解為.點睛:本題主要考查分式方程的解法.注意:解分式方程必須檢驗.22、(1)證明見解析;(2)△APQ是等邊三角形.【解析】

(1)根據(jù)等邊三角形的性質(zhì)可得AB=AC,再根據(jù)SAS證明△ABP≌△ACQ;(2)根據(jù)全等三角形的性質(zhì)得到AP=AQ,再證∠PAQ=60°,從而得出△APQ是等邊三角形.【詳解】證明:(1)∵△ABC為等邊三角形,∴AB=AC,∠BAC=60°,在△ABP和△ACQ中,∴△ABP≌△ACQ(SAS),(2)∵△ABP≌△ACQ,∴∠BAP=∠CAQ,AP=AQ,∵∠BAP+∠CAP=60°,∴∠PAQ=∠CAQ+∠CAP=60°,∴△APQ是等邊三角形.本題考查了全等三角形的判定,考查了全等三角形對應邊相等的性質(zhì),考查了正三角形的判定,本題中求證,△ABP≌△ACQ是解題的關鍵.23、【小題1】設所求拋物線的解析式為:,將A(1,0)、B(-3,0)、D(0,3)代入,得…………2分即所求拋物線的解析式為:……………3分【小題2】如圖④,在y軸的負半軸上取一點I,使得點F與點I關于x軸對稱,在x軸上取一點H,連接HF、HI、HG、GD、GE,則HF=HI…①設過A、E兩點的一次函數(shù)解析式為:y=kx+b(k≠0),∵點E在拋物線上且點E的橫坐標為-2,將x=-2,代入拋物線,得∴點E坐標為(-2,3)………………4分又∵拋物線圖象分別與x軸、y軸交于點A(1,0)、B(-3,0)、D(0,3),所以頂點C(-1,4)∴拋物線的對稱軸直線PQ為:直線x=-1,[中國教#&~@育出%版網(wǎng)]∴點D與點E關于PQ對稱,GD=GE……………②分別將點A(1,0)、點E(-2,3)代入y=kx+b,得:k+b=0,-2k+b=3解得:過A、E兩點的一次函數(shù)解析式為:y=-x+1∴當x=0時,y=1∴點F坐標為(0,1)……5分∴|DF|=2………③又∵點F與點I關于x軸對稱,∴點I坐標為(0,-1)∴|EI|=(-2-0)又∵要使四邊形DFHG的周長最小,由于DF是一個定值,∴只要使DG+GH+HI最小即可……6分由圖形的對稱性和①、②、③,可知,DG+GH+HF=EG+GH+HI只有當EI為一條直線時,EG+GH+HI最小設過E(-2,3)、I(0,-1)兩點的函數(shù)解析式為:y=k分別將點E(-2,3)、點I(0,-1)代入y=k-2k1過I、E兩點的一次函數(shù)解析式為:y=-2x-1∴當x=-1時,y=1;當y=0時,x=-12∴點G坐標為(-1,1),點H坐標為(-12∴四邊形DFHG的周長最小為:DF+DG+GH+HF=DF+EI由③和④,可知:DF+EI=2+2∴四邊形DFHG的周長最小為2+25【小題3】如圖⑤,由(2)可知,點A(1,0),點C(-1,4),設過A(1,0),點C(-1,4)兩點的函數(shù)解析式為:,得:k2解得:k2過A、C兩點的一次函數(shù)解析式為:y=-2x+2,當x=0時,y=2,即M的坐標為(0,2);由圖可知,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論