




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣西壯族自治區(qū)欽州市浦北縣市級名校2024年中考四模數學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.定義:若點P(a,b)在函數y=1x的圖象上,將以a為二次項系數,b為一次項系數構造的二次函數y=ax2+bx稱為函數y=1x的一個“派生函數”.例如:點(2,12)在函數y=1x的圖象上,則函數y=2x2+(1)存在函數y=1x(2)函數y=1xA.命題(1)與命題(2)都是真命題B.命題(1)與命題(2)都是假命題C.命題(1)是假命題,命題(2)是真命題D.命題(1)是真命題,命題(2)是假命題2.在△ABC中,∠C=90°,tanA=125,△ABC的周長為60,那么△ABCA.60 B.30 C.240 D.1203.下列每組數分別是三根小木棒的長度,用它們能擺成三角形的是()A.3cm,4cm,8cmB.8cm,7cm,15cmC.13cm,12cm,20cmD.5cm,5cm,11cm4.初三(1)班的座位表如圖所示,如果如圖所示建立平面直角坐標系,并且“過道也占一個位置”,例如小王所對應的坐標為(3,2),小芳的為(5,1),小明的為(10,2),那么小李所對應的坐標是()A.(6,3) B.(6,4) C.(7,4) D.(8,4)5.如圖,AB∥CD,DE⊥BE,BF、DF分別為∠ABE、∠CDE的角平分線,則∠BFD=()A.110° B.120° C.125° D.135°6.如圖,AB∥CD,點E在線段BC上,若∠1=40°,∠2=30°,則∠3的度數是()A.70° B.60° C.55° D.50°7.在直角坐標平面內,已知點M(4,3),以M為圓心,r為半徑的圓與x軸相交,與y軸相離,那么r的取值范圍為()A. B. C. D.8.在中,,,,則的值是()A. B. C. D.9.如圖,已知AB是⊙O的直徑,弦CD⊥AB于E,連接BC、BD、AC,下列結論中不一定正確的是()A.∠ACB=90° B.OE=BE C.BD=BC D.10.按如圖所示的方法折紙,下面結論正確的個數()①∠2=90°;②∠1=∠AEC;③△ABE∽△ECF;④∠BAE=∠1.A.1個 B.2個 C.1個 D.4個二、填空題(共7小題,每小題3分,滿分21分)11.如圖,網格中的四個格點組成菱形ABCD,則tan∠DBC的值為___________.12.七巧板是我們祖先的一項創(chuàng)造,被譽為“東方魔板”,如圖所示是一副七巧板,若已知S△BIC=1,據七巧板制作過程的認識,求出平行四邊形EFGH_____.13.分式與的最簡公分母是_____.14.規(guī)定一種新運算“*”:a*b=a-b,則方程x*2=1*x的解為________.15.二次函數y=(a-1)x2-x+a2-1
的圖象經過原點,則a的值為______.16.分解因式:4a2﹣1=_____.17.如圖,Rt△ABC的直角邊BC在x軸負半軸上,斜邊AC上的中線BD的反向延長線交y軸正半軸于點E,雙曲線y=(x<0)的圖象經過點A,S△BEC=8,則k=_____.三、解答題(共7小題,滿分69分)18.(10分)為了豐富校園文化,促進學生全面發(fā)展.我市某區(qū)教育局在全區(qū)中小學開展“書法、武術、黃梅戲進校園”活動.今年3月份,該區(qū)某校舉行了“黃梅戲”演唱比賽,比賽成績評定為A,B,C,D,E五個等級,該校部分學生參加了學校的比賽,并將比賽結果繪制成如下兩幅不完整的統(tǒng)計圖,請根據圖中信息,解答下列問題.(1)求該校參加本次“黃梅戲”演唱比賽的學生人數;(2)求扇形統(tǒng)計圖B等級所對應扇形的圓心角度數;(3)已知A等級的4名學生中有1名男生,3名女生,現從中任意選取2名學生作為全校訓練的示范者,請你用列表法或畫樹狀圖的方法,求出恰好選1名男生和1名女生的概率.19.(5分)已知:如圖,在平行四邊形中,的平分線交于點,過點作的垂線交于點,交延長線于點,連接,.求證:;若,,,求的長.20.(8分)如圖,有四張背面相同的卡片A、B、C、D,卡片的正面分別印有正三角形、平行四邊形、圓、正五邊形(這些卡片除圖案不同外,其余均相同).把這四張卡片背面向上洗勻后,進行下列操作:(1)若任意抽取其中一張卡片,抽到的卡片既是中心對稱圖形又是軸對稱圖形的概率是;(2)若任意抽出一張不放回,然后再從余下的抽出一張.請用樹狀圖或列表表示摸出的兩張卡片所有可能的結果,求抽出的兩張卡片的圖形是中心對稱圖形的概率.21.(10分)如圖,在樓房AB和塔CD之間有一棵樹EF,從樓頂A處經過樹頂E點恰好看到塔的底部D點,且俯角α為45°,從樓底B點1米的P點處經過樹頂E點恰好看到塔的頂部C點,且仰角β為30°.已知樹高EF=6米,求塔CD的高度(結果保留根號).22.(10分)某超市在春節(jié)期間開展優(yōu)惠活動,凡購物者可以通過轉動轉盤的方式享受折扣和優(yōu)惠,在每個轉盤中指針指向每個區(qū)域的可能性均相同,若指針指向分界線,則重新轉動轉盤,區(qū)域對應的優(yōu)惠方式如下,A1,A2,A3區(qū)域分別對應9折8折和7折優(yōu)惠,B1,B2,B3,B4區(qū)域對應不優(yōu)惠?本次活動共有兩種方式.方式一:轉動轉盤甲,指針指向折扣區(qū)域時,所購物品享受對應的折扣優(yōu)惠,指針指向其他區(qū)域無優(yōu)惠;方式二:同時轉動轉盤甲和轉盤乙,若兩個轉盤的指針均指向折扣區(qū)域時,所購物品享受折上折的優(yōu)惠,其他情況無優(yōu)惠.(1)若顧客選擇方式一,則享受優(yōu)惠的概率為;(2)若顧客選擇方式二,請用樹狀圖或列表法列出所有可能顧客享受折上折優(yōu)惠的概率.23.(12分)已知點E是矩形ABCD的邊CD上一點,BF⊥AE于點F,求證△ABF∽△EAD.24.(14分)已知:二次函數C1:y1=ax2+2ax+a﹣1(a≠0)把二次函數C1的表達式化成y=a(x﹣h)2+b(a≠0)的形式,并寫出頂點坐標;已知二次函數C1的圖象經過點A(﹣3,1).①求a的值;②點B在二次函數C1的圖象上,點A,B關于對稱軸對稱,連接AB.二次函數C2:y2=kx2+kx(k≠0)的圖象,與線段AB只有一個交點,求k的取值范圍.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】試題分析:(1)根據二次函數y=ax2+bx的性質a、b同號對稱軸在y軸左側,a、b異號對稱軸在y軸右側即可判斷.(2)根據“派生函數”y=ax2+bx,x=0時,y=0,經過原點,不能得出結論.(1)∵P(a,b)在y=上,∴a和b同號,所以對稱軸在y軸左側,∴存在函數y=的一個“派生函數”,其圖象的對稱軸在y軸的右側是假命題.(2)∵函數y=的所有“派生函數”為y=ax2+bx,∴x=0時,y=0,∴所有“派生函數”為y=ax2+bx經過原點,∴函數y=的所有“派生函數”,的圖象都進過同一點,是真命題.考點:(1)命題與定理;(2)新定義型2、D【解析】
由tanA的值,利用銳角三角函數定義設出BC與AC,進而利用勾股定理表示出AB,由周長為60求出x的值,確定出兩直角邊,即可求出三角形面積.【詳解】如圖所示,由tanA=125設BC=12x,AC=5x,根據勾股定理得:AB=13x,由題意得:12x+5x+13x=60,解得:x=2,∴BC=24,AC=10,則△ABC面積為120,故選D.【點睛】此題考查了解直角三角形,銳角三角函數定義,以及勾股定理,熟練掌握勾股定理是解本題的關鍵.3、C【解析】
根據三角形的三邊關系“任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”,進行分析.【詳解】A、3+4<8,不能組成三角形;B、8+7=15,不能組成三角形;C、13+12>20,能夠組成三角形;D、5+5<11,不能組成三角形.故選:C.【點睛】本題考查了三角形的三邊關系,關鍵是靈活運用三角形三邊關系.4、C【解析】
根據題意知小李所對應的坐標是(7,4).故選C.5、D【解析】
如圖所示,過E作EG∥AB.∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°.又∵DE⊥BE,BF,DF分別為∠ABE,∠CDE的角平分線,∴∠FBE+∠FDE=(∠ABE+∠CDE)=(360°﹣90°)=135°,∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故選D.【點睛】本題主要考查了平行線的性質以及角平分線的定義的運用,解題時注意:兩直線平行,同旁內角互補.解決問題的關鍵是作平行線.6、A【解析】試題分析:∵AB∥CD,∠1=40°,∠1=30°,∴∠C=40°.∵∠3是△CDE的外角,∴∠3=∠C+∠2=40°+30°=70°.故選A.考點:平行線的性質.7、D【解析】
先求出點M到x軸、y軸的距離,再根據直線和圓的位置關系得出即可.【詳解】解:∵點M的坐標是(4,3),
∴點M到x軸的距離是3,到y(tǒng)軸的距離是4,
∵點M(4,3),以M為圓心,r為半徑的圓與x軸相交,與y軸相離,
∴r的取值范圍是3<r<4,
故選:D.【點睛】本題考查點的坐標和直線與圓的位置關系,能熟記直線與圓的位置關系的內容是解此題的關鍵.8、D【解析】
首先根據勾股定理求得AC的長,然后利用正弦函數的定義即可求解.【詳解】∵∠C=90°,BC=1,AB=4,
∴,∴,故選:D.【點睛】本題考查了三角函數的定義,求銳角的三角函數值的方法:利用銳角三角函數的定義,轉化成直角三角形的邊長的比.9、B【解析】
根據垂徑定理及圓周角定理進行解答即可.【詳解】∵AB是⊙O的直徑,∴∠ACB=90°,故A正確;∵點E不一定是OB的中點,∴OE與BE的關系不能確定,故B錯誤;∵AB⊥CD,AB是⊙O的直徑,∴,∴BD=BC,故C正確;∴,故D正確.故選B.【點睛】本題考查的是垂徑定理,熟知平分弦的直徑平分這條弦,并且平分弦所對的兩條弧是解答此題的關鍵.10、C【解析】∵∠1+∠1=∠2,∠1+∠1+∠2=180°,∴∠1+∠1=∠2=90°,故①正確;∵∠1+∠1=∠2,∴∠1≠∠AEC.故②不正確;∵∠1+∠1=90°,∠1+∠BAE=90°,∴∠1=∠BAE,又∵∠B=∠C,∴△ABE∽△ECF.故③,④正確;故選C.二、填空題(共7小題,每小題3分,滿分21分)11、3【解析】試題分析:如圖,連接AC與BD相交于點O,∵四邊形ABCD是菱形,∴AC⊥BD,BO=BD,CO=AC,由勾股定理得,AC==,BD==,所以,BO==,CO==,所以,tan∠DBC===3.故答案為3.考點:3.菱形的性質;3.解直角三角形;3.網格型.12、1【解析】
根據七巧板的性質可得BI=IC=CH=HE,因為S△BIC=1,∠BIC=90°,可求得BI=IC=,BC=1,在求得點G到EF的距離為sin45°,根據平行四邊形的面積即可求解.【詳解】由七巧板性質可知,BI=IC=CH=HE.又∵S△BIC=1,∠BIC=90°,∴BI?IC=1,∴BI=IC=,∴BC==1,∵EF=BC=1,FG=EH=BI=,∴點G到EF的距離為:,∴平行四邊形EFGH的面積=EF?=1×=1.故答案為1【點睛】本題考查了七巧板的性質、等腰直角三角形的性質及平行四邊形的面積公式,熟知七巧板的性質是解決問題的關鍵.13、3a2b【解析】
利用取各分母系數的最小公倍數與字母因式的最高次冪的積作公分母求解即可.【詳解】分式與的最簡公分母是3a2b.故答案為3a2b.【點睛】本題考查最簡公分母,解題的關鍵是掌握求最簡公分母的方法.14、【解析】
根據題中的新定義化簡所求方程,求出方程的解即可.【詳解】根據題意得:x-×2=×1-,x=,解得:x=,故答案為x=.【點睛】此題的關鍵是掌握新運算規(guī)則,轉化成一元一元一次方程,再解這個一元一次方程即可.15、-1【解析】
將(2,2)代入y=(a-1)x2-x+a2-1即可得出a的值.【詳解】解:∵二次函數y=(a-1)x2-x+a2-1的圖象經過原點,∴a2-1=2,∴a=±1,∵a-1≠2,∴a≠1,∴a的值為-1.故答案為-1.【點睛】本題考查了二次函數圖象上點的坐標特征,圖象過原點,可得出x=2時,y=2.16、(2a+1)(2a﹣1)【解析】
有兩項,都能寫成完全平方數的形式,并且符號相反,可用平方差公式展開.【詳解】4a2﹣1=(2a+1)(2a﹣1).故答案為:(2a+1)(2a-1).【點睛】此題考查多項式因式分解,根據多項式的特點選擇適合的分解方法是解題的關鍵.17、1【解析】
∵BD是Rt△ABC斜邊上的中線,∴BD=CD=AD,∴∠DBC=∠ACB,又∠DBC=∠OBE,∠BOE=∠ABC=90°,∴△ABC∽△EOB,∴∴AB?OB=BC?OE,∵S△BEC=×BC?OE=8,∴AB?OB=1,∴k=xy=AB?OB=1.三、解答題(共7小題,滿分69分)18、(1)50;(2)115.2°;(3)12【解析】(1)先求出參加本次比賽的學生人數;(2)由(1)求出的學生人數,即可求出B等級所對應扇形的圓心角度數;(3)首先根據題意列表或畫出樹狀圖,然后由求得所有等可能的結果,再利用概率公式即可求得答案.解:(1)參加本次比賽的學生有:4÷8%=50(人)(2)B等級的學生共有:50-4-20-8-2=16(人).∴所占的百分比為:16÷50=32%∴B等級所對應扇形的圓心角度數為:360°×32%=115.2°.(3)列表如下:男女1女2女3男﹣﹣﹣(女,男)(女,男)(女,男)女1(男,女)﹣﹣﹣(女,女)(女,女)女2(男,女)(女,女)﹣﹣﹣(女,女)女3(男,女)(女,女)(女,女)﹣﹣﹣∵共有12種等可能的結果,選中1名男生和1名女生結果的有6種.∴P(選中1名男生和1名女生)=6“點睛”本題考查了列表法與樹狀圖法:通過列表法或樹狀圖法展示所有等可能的結果求出n,再從中選出符合事件A或B的結果數目m,然后根據概率公式求出事件A或B的概率.通過扇形統(tǒng)計圖求出扇形的圓心角度數,應用數形結合的思想是解決此類題目的關鍵.19、(1)詳見解析;(2)【解析】
(1)根據題意平分可得,從而證明即可解答(2)由(1)可知,再根據四邊形是平行四邊形可得,過點作延長線于點,再根據勾股定理即可解答【詳解】(1)證明:平分又又(2)四邊形是平行四邊形,為等邊三角形過點作延長線于點.在中,【點睛】此題考查三角形全等的判定與性質,勾股定理,平行四邊形的性質,解題關鍵在于作好輔助線20、(1);(2).【解析】
(1)既是中心對稱圖形又是軸對稱圖形只有圓一個圖形,然后根據概率的意義解答即可;(2)畫出樹狀圖,然后根據概率公式列式計算即可得解.【詳解】(1)∵正三角形、平行四邊形、圓、正五邊形中只有圓既是中心對稱圖形又是軸對稱圖形,∴抽到的卡片既是中心對稱圖形又是軸對稱圖形的概率是;(2)根據題意畫出樹狀圖如下:一共有12種情況,抽出的兩張卡片的圖形是中心對稱圖形的是B、C共有2種情況,所以,P(抽出的兩張卡片的圖形是中心對稱圖形).【點睛】本題考查了列表法和樹狀圖法,用到的知識點為:概率=所求情況數與總情況數之比.21、(6+2)米【解析】
根據題意求出∠BAD=∠ADB=45°,進而根據等腰直角三角形的性質求得FD,在Rt△PEH中,利用特殊角的三角函數值分別求出BF,即可求得PG,在Rt△PCG中,繼而可求出CG的長度.【詳解】由題意可知∠BAD=∠ADB=45°,∴FD=EF=6米,在Rt△PEH中,∵tanβ==,∴BF==5,∴PG=BD=BF+FD=5+6,∵tanβ=,∴CG=(5+6)·=5+2,∴CD=(6+2)米.【點睛】本題考查了解直角三角形的應用,解答本題的關鍵是構造直角三角形,利用三角函數的知識求解相關線段的長度.22、(1);(2).【解析】
(1)根據題意和圖形,可以求得顧客選擇方式一,享受優(yōu)惠的概率;(2)根據
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 房子承讓合同范本
- 個人與廣告合同范本
- 幕墻配件采購合同范本
- 工地管網維護合同范本
- 供水水泵采購合同范本
- 四川護理職業(yè)學院《中外文學經典導讀》2023-2024學年第二學期期末試卷
- 山東菏澤一中2025年高三4月適應性測試一模英語試題含解析
- 吉林省長春市教研室2025年初三二模物理試題(詳細答案版)含解析
- 2025屆河南省鄧州市花洲實驗高級中學高三第一次段考英語試題試卷含解析
- 2025屆四川省瀘州瀘縣初三下學期一輪模擬物理試題試卷含解析
- DB32/T 3356-2018 南京椴組培育苗技術規(guī)程
- GB/T 44982-2024綠色產品評價日用陶瓷
- 科研誠信與學術規(guī)范第六講課件
- 提高施工現場從業(yè)人員隱患上報(舉報)率 -4:3
- 戲劇常識知識考試試題題庫及答案
- 小牛在線2018第四季度營銷方案20181106
- 職業(yè)院校“金課”建設方案
- 醫(yī)療護理員基礎理論知識考試試題題庫及答案
- JT-T-1051-2016城市軌道交通運營突發(fā)事件應急預案編制規(guī)范
- 山東省濟南市槐蔭中區(qū)2023-2024學年八年級下學期期中考試物理試卷
- 藝術中國智慧樹知到期末考試答案2024年
評論
0/150
提交評論